Skip to main content

Fully Autonomous UAV-Based Action Recognition System Using Aerial Imagery

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12509))

Included in the following conference series:

Abstract

Human action recognition is an important topic in artificial intelligence with a wide range of applications including surveillance systems, search-and-rescue operations, human-computer interaction, etc. However, most of the current action recognition systems utilize videos captured by stationary cameras. Another emerging technology is the use of unmanned ground and aerial vehicles (UAV/UGV) for different tasks such as transportation, traffic control, border patrolling, wild-life monitoring, etc. This technology has become more popular in recent years due to its affordability, high maneuverability, and limited human interventions. However, there does not exist an efficient action recognition algorithm for UAV-based monitoring platforms. This paper considers UAV-based video action recognition by addressing the key issues of aerial imaging systems such as camera motion and vibration, low resolution, and tiny human size. In particular, we propose an automated deep learning-based action recognition system which includes the three stages of video stabilization using the SURF feature selection and Lucas-Kanade method, human action area detection using faster region-based convolutional neural networks (R-CNN), and action recognition. We propose a novel structure that extends and modifies the InceptionResNet-v2 architecture by combining a 3D CNN architecture and a residual network for action recognition. We achieve an average accuracy of 85.83% for the entire-video-level recognition when applying our algorithm to the popular UCF-ARG aerial imaging dataset. This accuracy significantly improves upon the state-of-the-art accuracy by a margin of 17%.

This material is based upon the work supported by the National Science Foundation under Grant No. 1755984. This work is also partially supported by the Arizona Board of Regents (ABOR) under Grant No. 1003329.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nagendran, A., Harper, D.: UCF-ARG dataset, University of Central Florida (2010). http://crcv.ucf.edu/data/UCF-ARG.php

  2. Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., Arshad, H.: State-of-the-art in artificial neural network applications: a survey. Heliyon 4(11), e00938 (2018)

    Article  Google Scholar 

  3. AlDahoul, N., Sabri, M., Qalid, A., Mansoor, A.M.: Real-time human detection for aerial captured video sequences via deep models. Comput. Intell. Neurosci. 2018 (2018)

    Google Scholar 

  4. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  5. Bouguet, J.Y., et al.: Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm (2001)

    Google Scholar 

  6. Burghouts, G., van Eekeren, A., Dijk, J.: Focus-of-attention for human activity recognition from UAVs. In: Electro-Optical and Infrared Systems: Technology and Applications XI, vol. 9249 (2014)

    Google Scholar 

  7. Danafar, S., Gheissari, N.: Action recognition for surveillance applications using optic flow and SVM. In: Asian Conference on Computer Vision (2007)

    Google Scholar 

  8. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625–2634 (2015)

    Google Scholar 

  9. Feichtenhofer, C., Pinz, A., Wildes, R.P.: Spatiotemporal multiplier networks for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4768–4777 (2017)

    Google Scholar 

  10. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1933–1941 (2016)

    Google Scholar 

  11. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  12. Han, S., Achar, M., Lee, S., Peña-Mora, F.: Empirical assessment of a RGB-D sensor on motion capture and action recognition for construction worker monitoring. Visual. Eng. 1(1), 6 (2013)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016. https://doi.org/10.1109/CVPR.2016.90

  14. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  15. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  16. Lowe, D.G., et al.: Object recognition from local scale-invariant features. In: ICCV, vol. 99, pp. 1150–1157 (1999)

    Google Scholar 

  17. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision (1981)

    Google Scholar 

  18. Mliki, H., Bouhlel, F., Hammami, M.: Human activity recognition from UAV-captured video sequences. Pattern Recogn. 100, 107140 (2020)

    Article  Google Scholar 

  19. Peng, H., Razi, A., Afghah, F., Ashdown, J.: A unified framework for joint mobility prediction and object profiling of drones in UAV networks. J. Commun. Netw. 20(5), 434–442 (2018)

    Article  Google Scholar 

  20. Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput. 28(6), 976–990 (2010)

    Article  Google Scholar 

  21. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5533–5541 (2017)

    Google Scholar 

  22. Rautaray, S.S., Agrawal, A.: Vision based hand gesture recognition for human computer interaction: a survey. Artif. Intell. Rev. 43(1), 1–54 (2012). https://doi.org/10.1007/s10462-012-9356-9

    Article  Google Scholar 

  23. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  24. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  25. Shamsoshoara, A., Afghah, F., Razi, A., Mousavi, S., Ashdown, J., Turk, K.: An autonomous spectrum management scheme for unmanned aerial vehicle networks in disaster relief operations. IEEE Access 8, 58064–58079 (2020)

    Article  Google Scholar 

  26. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems 27, pp. 568–576 (2014)

    Google Scholar 

  27. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  28. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Razi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, H., Razi, A. (2020). Fully Autonomous UAV-Based Action Recognition System Using Aerial Imagery. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12509. Springer, Cham. https://doi.org/10.1007/978-3-030-64556-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64556-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64555-7

  • Online ISBN: 978-3-030-64556-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics