Skip to main content

Drone Application in Smart Cities: The General Overview of Security Vulnerabilities and Countermeasures for Data Communication

  • Chapter
  • First Online:
Development and Future of Internet of Drones (IoD): Insights, Trends and Road Ahead

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 332))

Abstract

With the boost of technologies in computing, the Internet of things (IoT), and Information and Communication Technologies (ICT), the demand for using drones has been increased in real-world applications. Recently, unmanned aerial vehicles (UAVs) or drones can be used to complete a wide range of different tasks from the military to the industry with numerous studies available in the literature. However, the broad use of drones for smart cities also faces several technical, societal issues such as cybersecurity, privacy, and public safety that need to be concerned. This chapter briefly provides a general overview of cybersecurity vulnerabilities and cyber-attacks through a meta-analysis of relevant literature review towards drones such as Wi-Fi security, drone networking security, malicious software, and the like. Moreover, several countermeasures are explained in this chapter including detection methods and defense mechanisms to protect drones from their security vulnerabilities. Importantly, this paper raises cybersecurity awareness for users and presents solutions for future research in this area of interest. In fact, most cybersecurity vulnerabilities are based on sensors, communication links, and privacy via photos. Therefore, to ensure the security of drones, there is a need for a combination of the solutions for multiple sensors, the use of safe communication links instead of Wi-Fi, and the application of the CIA triad concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erdelj, M., Natalizio, E., Chowdhury, K.R., Akyildiz, I.F.: Help from the sky: leveraging UAVs for disaster management. IEEE Pervasive Comput. 16(1), 24–32 (2017). https://doi.org/10.1109/MPRV.2017.11

    Article  Google Scholar 

  2. Foina, A.G., Sengupta, R., Lerchi, P., Liu, Z., Krainer, C.: Drones in smart cities: overcoming barriers through air traffic control research. In: 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems RED-UAS 2015, pp. 351–359 (2016). https://doi.org/10.1109/red-uas.2015.7441027

  3. George, J., Sujit, P.B., Sousa, J.B.: Search strategies for multiple UAV search and destroy missions. J. Intell. Robot. Syst. Theory Appl. 61(1–4), 355–367 (2011). https://doi.org/10.1007/s10846-010-9486-8

    Article  Google Scholar 

  4. Sun, Z., Wang, P., Vuran, M.C., Al-Rodhaan, M.A., Al-Dhelaan, A.M., Akyildiz, I.F.: BorderSense: border patrol through advanced wireless sensor networks. Ad Hoc Netw. 9(3), 468–477 (2011). https://doi.org/10.1016/j.adhoc.2010.09.008

    Article  Google Scholar 

  5. Barrado, C., Meseguer, R., López, J., Pastor, E., Santamaria, E., Royo, P.: Wildfire monitoring using a mixed air-ground mobile network. IEEE Pervasive Comput. 9(4), 24–32 (2010). https://doi.org/10.1109/MPRV.2010.54

    Article  Google Scholar 

  6. De Freitas, E.P. et al.: UAV relay network to support WSN connectivity. In: 2010 International Congress on Ultra Modern Telecommunications and Control Systems, ICUMT 2010, pp. 309–314 (2010). https://doi.org/10.1109/icumt.2010.5676621

  7. Cho, A., Kim, J., Lee, S., Kee, C.: Wind estimation and airspeed calibration using a UAV with a single-antenna GPS receiver and pitot tube. IEEE Trans. Aerosp. Electron. Syst. 47(1), 109–117 (2011). https://doi.org/10.1109/TAES.2011.5705663

    Article  Google Scholar 

  8. Maza, I., Caballero, F., Capitán, J., Martínez-De-Dios, J.R., Ollero, A.: Experimental results in multi-UAV coordination for disaster management and civil security applications. J. Intell. Robot. Syst. Theory Appl. 61(1–4), 563–585 (2011). https://doi.org/10.1007/s10846-010-9497-5

    Article  Google Scholar 

  9. Puri, V., Nayyar, A., Raja, L.: Agriculture drones: a modern breakthrough in precision agriculture. J. Stat. Manag. Syst. 20(4), 507–518 (2017). https://doi.org/10.1080/09720510.2017.1395171

    Article  Google Scholar 

  10. Xiang, H., Tian, L.: Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst. Eng. 108(2), 174–190 (2011). https://doi.org/10.1016/j.biosystemseng.2010.11.010

    Article  MathSciNet  Google Scholar 

  11. Rajesh Ganesan, A.H.E., Mercilin Raajini, X., Nayyar, A., Sanjeevikumar, P., Hossain, E.: BOLD: Bio-Inspired Optimized Leader Election for Multiple Drones (2020)

    Google Scholar 

  12. Semsch, E., Jakob, M., Pavlíček, D., Pěchouček, M.: Autonomous UAV surveillance in complex urban environments. In: Proceedings—2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, IAT 2009, vol. 2, pp. 82–85 (2009). https://doi.org/10.1109/wi-iat.2009.132

  13. Khan, N.A., Jhanjhi, N.Z., Brohi, S.N., Usmani, R.S.A., Nayyar, A.: Smart traffic monitoring system using Unmanned Aerial Vehicles (UAVs). Comput. Commun. 157(April), 434–443 (2020). https://doi.org/10.1016/j.comcom.2020.04.049

    Article  Google Scholar 

  14. Tractica: The Commercial Drone Market Is Experiencing Steady, Sustained Growth and Consolidation, with Global Revenue Expected to Reach $13.7 Billion by 2025 (2019) [online]. Available at: The Commercial Drone Market Is Experiencing Steady, Sustained Growth and Consolidation, with Global Revenue Expected to Reach $13.7 Billion by 2025. Accessed 02 Aug 2020

    Google Scholar 

  15. Singh, S.P., Nayyar, A., Kumar, R., Sharma, A.: Fog computing: from architecture to edge computing and big data processing. J. Supercomput. 75(4), 2070–2105 (2019). https://doi.org/10.1007/s11227-018-2701-2

    Article  Google Scholar 

  16. Krishnamurthi, A., Nayyar, R., Solanki, A.: Innovation opportunities through Internet of Things (IoT) for smart cities. Green Smart Technology for Smart Cities, pp. 261–292. CRC Press, Boca Raton, FL, USA (2019)

    Google Scholar 

  17. Kumar, A., Nayyar, A.: si 3-Industry: a sustainable, intelligent, innovative, internet of things industry. A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development, pp. 1–21. Springer, Cham (2020)

    Google Scholar 

  18. Nayyar, A., Nguyen, B.L., Nguyen, N.G.: The Internet of Drone Things (IoDT): future envision of smart drones. In: First International Conference on Sustainable Technologies for Computational Intelligence, vol. 1045, pp. 563–580. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0029-9_45

  19. Singh, P.: Smart cities: concept of new urbanization in India. Int. J. Acad. Res. Dev. 2(5), 127–130 (2017)

    Google Scholar 

  20. Mohamed, N., Al-Jaroodi, J., Jawhar, I., Idries, A., Mohammed, F.: Unmanned aerial vehicles applications in future smart cities. Technol. Forecast. Soc. Change 153, 119293 (2020). https://doi.org/10.1016/j.techfore.2018.05.004

    Article  Google Scholar 

  21. Mandl, C., Kirschner, T.: European Smart City Initiative Assessment of Best Practices to Stimulate Market-/Demand-Pull (2014). https://doi.org/10.13140/2.1.4559.7449

  22. Robert, J.: Urban Europe (2018)

    Google Scholar 

  23. Gartner: Gartner 2018 Hype Cycle for IT in GCC Identifies Six Technologies That Will Reach Mainstream Adoption in Five to 10 Years (2018) [online]. Available at: https://www.gartner.com/en/newsroom/press-releases/2018-12-13-gartner-2018-hype-cycle-for-it-in-gcc-identifies-six-technologies-that-will-reach-mainstream-adoption-in-five-to-10-years. Accessed 13 Jul 2020

  24. Alusi, A., Eccles, R.G., Edmondson, A.C., Zuzul, T.: Sustainable cities: oxymoron or the shape of the future? SSRN Electron. J. (2012). https://doi.org/10.2139/ssrn.1726484

    Article  Google Scholar 

  25. Solanki, A., Nayyar, A.: Green Internet of things (G-IoT): ICT technologies, principles, applications, projects, and challenges. Handbook of Research on Big Data and the IoT, pp. 379–405. IGI Global (2019)

    Google Scholar 

  26. Review, A.S.A.: Smart Cities—Six Dimensions (2016). https://doi.org/10.3850/978-981-07-8859-9

  27. Lee, J.H., Phaal, R., Lee, S.H.: An integrated service-device-technology roadmap for smart city development. Technol. Forecast. Soc. Change 80(2), 286–306 (2013). https://doi.org/10.1016/j.techfore.2012.09.020

    Article  Google Scholar 

  28. Smart Circle: Boyd Cohen: `The Smart City Wheel’ (2014) [online]. Available at: https://www.smart-circle.org/smart-city/boyd-cohen-smart-city-wheel/. Accessed 13 Jul 2020

  29. Defensenetworks: The Smart City Imperative—Why IT Matters (2017) [online]. Available at: http://www.densenetworks.com/smart-cities/the-smart-city-imperative-why-it-matters. Accessed 13 Jul 2020

  30. Jucevičius, R., Patašienė, I., Patašius, M.: Digital dimension of smart city: critical analysis. Procedia—Soc. Behav. Sci. 156(April), 146–150 (2014). https://doi.org/10.1016/j.sbspro.2014.11.137

    Article  Google Scholar 

  31. Marsal-Llacuna, M.L., Colomer-Llinàs, J., Meléndez-Frigola, J.: Lessons in urban monitoring taken from sustainable and livable cities to better address the Smart Cities initiative. Technol. Forecast. Soc. Change 90(PB), 611–622 (2015). https://doi.org/10.1016/j.techfore.2014.01.012

  32. Mohammed, F., Idries, A., Mohamed, N., Al-Jaroodi, J., Jawhar, I.: UAVs for smart cities: opportunities and challenges. In: 2014 International Conference on Unmanned Aircraft Systems, ICUAS 2014—Conference Proceedings, pp. 267–273 (2014). https://doi.org/10.1109/icuas.2014.6842265

  33. Vattapparamban, E., Güvenç, I., Yurekli, A.I., Akkaya, K., Uluaǧaç, S.: Drones for smart cities: issues in cybersecurity, privacy, and public safety. In: 2016 International Wireless Communications and Mobile Computing Conference, IWCMC 2016, pp. 216–221 (2016). https://doi.org/10.1109/IWCMC.2016.7577060

  34. Menouar, H., Guvenc, I., Akkaya, K., Uluagac, A.S., Kadri, A., Tuncer, A.: UAV-enabled intelligent transportation systems for the smart city: applications and challenges. IEEE Commun. Mag. 55(3), 22–28 (2017). https://doi.org/10.1109/MCOM.2017.1600238CM

    Article  Google Scholar 

  35. Khan, M.A., Safi, E.A., Khan, I.U., Alvi, B.A.: Drones for good in smart cities: a review. In: International Conference on Electrical, Electronics, Computers, Communication, Mechanical and Computing, Jan 2018, p. 8

    Google Scholar 

  36. Moshref-Javadi, M., Lee, S., Winkenbach, M.: Design and evaluation of a multi-trip delivery model with truck and drones. Transp. Res. Part E Logist. Transp. Rev. 136, 101887 (2020). https://doi.org/10.1016/j.tre.2020.101887

  37. Crişan, G.C., Nechita, E.: On a cooperative truck-and-drone delivery system. Procedia Comput. Sci. 159, 38–47 (2019). https://doi.org/10.1016/j.procs.2019.09.158

    Article  Google Scholar 

  38. Popper, B.: UPS researching delivery drones that could compete with Amazon’s Prime Air (2013) [online]. Available at: https://www.theverge.com/2013/12/3/5169878/ups-is-researching-its-own-delivery-drones-to-compete-with-amazons. Accessed 13 Jul 2020

  39. DHL: DHL Parcelcopter (2020) [online]. Available at: https://www.dpdhl.com/en/media-relations/specials/dhl-parcelcopter.html. Accessed 13 Jul 2020

  40. Bensinger, G., Nicas, J.: Delivery Drones Hit Bumps on Path to Doorstep (2015) [online]. Available at: https://www.wsj.com/articles/technical-hurdles-delay-drone-deliveries-1426867441. Accessed 13 Jul 2020

  41. Jee, C.: UPS Has Won Approval to Run the First Drone Delivery Airline in the US (2020) [online]. Available at: https://www.technologyreview.com/2019/10/02/102587/ups-has-won-approval-to-run-the-first-drone-delivery-airline-in-the-us/. Accessed 04 Apr 2020

  42. Kanistras, K., Martins, G., Rutherford, M.J., Valavanis, K.P.: Survey of unmanned aerial vehicles (UAVs) for traffic monitoring. Handbook of Unmanned Aerial Vehicles, pp. 2643–2666 (2015). https://doi.org/10.1007/978-90-481-9707-1_122

  43. Tesorero, A.: Drones to monitor Dubai roads in 2017 (2016) [online]. Available: https://www.khaleejtimes.com/nation/transport/drones-to-monitor-dubai-roads-in-2017. Accessed 13 Jul 2020

  44. Press: Elistair Tethered Traffic Drone Monitors Lyon Rush Hour (2017) [online]. Available at: https://www.suasnews.com/2017/01/elistair-tethered-traffic-drone-monitors-lyon-rush-hour/. Accessed 04 Apr 2020

  45. Barmpounakis, E., Geroliminis, N.: On the new era of urban traffic monitoring with massive drone data: the pNEUMA large-scale field experiment. Transp. Res. Part C Emerg. Technol. 111, 50–71 (2020). https://doi.org/10.1016/j.trc.2019.11.023

  46. Pal, B.B., Chakraborti, D., Biswas, P., Mukhopadhyay, A.: An application of genetic algorithm method for solving patrol manpower deployment problems through fuzzy goal programming in traffic management system: a case study. Int. J. Bio-Inspired Comput. 4(1), 47–60 (2012). https://doi.org/10.1504/IJBIC.2012.044930

    Article  Google Scholar 

  47. Savkin, A.V., Huang, H.: Asymptotically optimal deployment of drones for surveillance and monitoring. Sensors (Switzerland) 19(9) (2019). https://doi.org/10.3390/s19092068

  48. Liu, M., Liu, X., Zhu, M., Zheng, F.: Stochastic drone fleet deployment and planning problem considering multiple-type delivery service. Sustainability 11(14), 1–18 (2019). https://doi.org/10.3390/su11143871

    Article  Google Scholar 

  49. Saleem, Y., Rehmani, M.H., Zeadally, S.: Integration of Cognitive Radio Technology with unmanned aerial vehicles: Issues, opportunities, and future research challenges. J. Netw. Comput. Appl. 50, 15–31 (2015). https://doi.org/10.1016/j.jnca.2014.12.002

    Article  Google Scholar 

  50. Luo, H., Zhang, P., Wang, J., Wang, G., Meng, F.: Traffic patrolling routing problem with drones in an urban road system. Sensors (Switzerland) 19(23), 1–20 (2019). https://doi.org/10.3390/s19235164

    Article  Google Scholar 

  51. Loughran, J.: Fully operational drone units have been launched by two police forces for the first time in the UK (2017) [online]. Available at: https://eandt.theiet.org/content/articles/2017/07/two-police-forces-introduce-drone-units-in-historic-first-for-law-enforcement/. Accessed 13 Jul 2020

  52. Ward, V.: Police to use drones to aid criminal investigations (2016) [online]. Available at: https://www.telegraph.co.uk/news/uknews/crime/12081915/Police-to-use-drones-to-aid-criminal-investigations.html. Accessed 04 Apr 2020

  53. Lei, Z.: 1,000 drones used by police across country (2017) [online]. Available at: https://www.chinadaily.com.cn/china/2017-06/19/content_29792454.htm. Accessed 04 Apr 2020

  54. Mishra, B., Garg, D., Narang, P., Mishra, V.: Drone-surveillance for search and rescue in natural disaster. Comput. Commun. 156, 1–10 (2020). https://doi.org/10.1016/j.comcom.2020.03.012

    Article  Google Scholar 

  55. Tuna, G., Nefzi, B., Conte, G.: Unmanned aerial vehicle-aided communications system for disaster recovery. J. Netw. Comput. Appl. 41(1), 27–36 (2014). https://doi.org/10.1016/j.jnca.2013.10.002

    Article  Google Scholar 

  56. Estes, A.C.: Dubai’s Turning Drones into Firefighters [online]. Available at: https://gizmodo.com/dubais-turning-drones-into-firefighters-1505685714. Accessed 13 Jul 2020

  57. Rojas, R.: New York City’s Firefighting Arsenal Will Soon Include Drones (2016) [online]. Available at: https://www.nytimes.com/2016/09/09/nyregion/new-york-city-fire-department-drones.html. Accessed 13 Jul 2020

  58. Jawhar, I., Mohamed, N., Al-Jaroodi, J.: Networking and communication for smart city systems. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 1–7 (2018). https://doi.org/10.1109/uic-atc.2017.8397563

  59. Ullah, F., Al-turjman, F., Nayyar, A.: IoT-based green city architecture using secured and sustainable android services. Environ. Technol. Innov. 20 (2020). https://doi.org/10.1016/j.eti.2020.101091

  60. Zeng, Y., Zhang, R., Lim, T.J.: Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun. Mag. 54(5), 36–42 (2016). https://doi.org/10.1109/MCOM.2016.7470933

    Article  Google Scholar 

  61. Alsamhi, S., Ma, O., Ansari, M., Gupta, S.: Collaboration of drone and internet of public safety things in smart cities: an overview of QoS and network performance optimization. Drones 3(1), 13 (2019). https://doi.org/10.3390/drones3010013

    Article  Google Scholar 

  62. Stöcker, C., Bennett, R., Nex, F., Gerke, M., Zevenbergen, J.: Review of the current state of UAV regulations. Remote Sens. 9(5), 33–35 (2017). https://doi.org/10.3390/rs9050459

    Article  Google Scholar 

  63. Altawy, R., Youssef, A.M.: Security, privacy, and safety aspects of civilian drones: a survey. ACM Trans. Cyber-Phys. Syst. 1(2), 1–25 (2017). https://doi.org/10.1145/3001836

    Article  Google Scholar 

  64. Khan, N.A., Jhanjhi, N.Z., Brohi, S.N., Nayyar, A.: Emerging use of UAV’s: secure communication protocol issues and challenges. Elsevier Inc. (2020)

    Google Scholar 

  65. Dung, N.D.: Developing models for managing drones in the transportation system in smart cities. Electr. Control Commun. Eng. 15(2), 71–78 (2020). https://doi.org/10.2478/ecce-2019-0010

    Article  Google Scholar 

  66. Federal Aviation Administration: Integration of Civil Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) Roadmap, 2nd edn., p. 61 (2018)

    Google Scholar 

  67. Sándor, Z.: Challenges caused by the unmanned aerial vehicle in the air traffic management. Period. Polytech. Transp. Eng. 47(2), 96–105 (2019). https://doi.org/10.3311/PPtr.11204

    Article  Google Scholar 

  68. Pathiyil, L., Low, K.H., Soon, B.H., Mao, S.: Enabling safe operations of unmanned aircraft systems in an urban environment: a preliminary study. Atmri. Ntu. Edu. Sg, pp. 1–10 (2016)

    Google Scholar 

  69. Dung, N.D., Rohacs, J.: The drone-following models in smart cities. In: 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)—Proceedings (2018). https://doi.org/10.1109/rtucon.2018.8659813

  70. Szullo, A., Seller, R., Rohacs, D., Renner, P.: Multilateration based UAV detection and localization. Proceedings of the International Radar Symposium (2017). https://doi.org/10.23919/IRS.2017.8008235

  71. Hayat, S., Yanmaz, E., Muzaffar, R.: Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint. IEEE Commun. Surv. Tutorials 18(4), 2624–2661 (2016). https://doi.org/10.1109/COMST.2016.2560343

    Article  Google Scholar 

  72. Lord, N.: What is Cyber Security? Definition, Best Practices & More (2019) [online]. Available at: https://digitalguardian.com/blog/what-cyber-security

  73. Comodo one: What is Cyber Security?, 2018. [Online]. Available: https://one.comodo.com/blog/cyber-security/what-is-cyber-security.php

  74. Kaspersky: What is Cyber Security? (2020) [online]. Available at: https://www.kaspersky.com/resource-center/definitions/what-is-cyber-security

  75. Craigen, D., Diakun-Thibault, N., Purse, R.: Defining cybersecurity. Technol. Innov. Manag. Rev. 4(10), 13–21 (2014). https://doi.org/10.22215/timreview835

    Article  Google Scholar 

  76. CISA: What is Cybersecurity? (2009) [online]. Available at: https://www.us-cert.gov/ncas/tips/ST04-001

  77. Rouse, M.: What is Cybersecurity? Everything You Need to Know (2020) [online]. Available at: https://searchsecurity.techtarget.com/definition/cybersecurity

  78. Uluağaç, S., Vattapparamban, E., Güvenç, İ., Yurekli, A.I., Akkaya, K.: Drones for Smart Cities: Issues in Cybersecurity, Privacy, and Public Safety, pp. 216–221 (2016)

    Google Scholar 

  79. Wang, K., Chen, S., Pan, A.: Time and Position Spoofing with Open Source Projects (2015)

    Google Scholar 

  80. Horton, E., Ranganathan, P.: Development of a GPS spoofing apparatus to attack a DJI Matrice 100 Quadcopter. J. Glob. Position. Syst. 16(1) (2018). https://doi.org/10.1186/s41445-018-0018-3

  81. Jansen, K., Schafer, M., Moser, D., Lenders, V., Popper, C., Schmitt, J.: Crowd-GPS-Sec: leveraging crowdsourcing to detect and localize GPS spoofing attacks. In: Proceedings—IEEE Symposium on Security and Privacy, May 2018, pp. 1018–1031 (2018). https://doi.org/10.1109/sp.2018.00012

  82. O’Hanlon, B.W., Psiaki, M.L., Bhatti, J.A., Shepard, D.P., Humphreys, T.E.: Real-time GPS spoofing detection via correlation of encrypted signals. Navig. J. Inst. Navig. 60(4), 267–278 (2013). https://doi.org/10.1002/navi.44

    Article  Google Scholar 

  83. Arteaga, S.P., Hernandez, L.A.M., Perez, G.S., Orozco, A.L.S., Villalba, L.J.G.: Analysis of the GPS spoofing vulnerability in the drone 3DR solo. IEEE Access 7, 51782–51789 (2019). https://doi.org/10.1109/ACCESS.2019.2911526

    Article  Google Scholar 

  84. Kerns, A.J., Shepard, D.P., Bhatti, J.A., Humphreys, T.E.: Unmanned aircraft capture and control via GPS spoofing. J. Field Robot. 31(4), 617–636 (2014). https://doi.org/10.1109/ICIF.2008.4632328

    Article  Google Scholar 

  85. Shepard, D.P., Bhatti, J.A., Humphreys, T.E., Fansler, A.A.: Evaluation of smart grid and civilian UAV vulnerability to GPS spoofing attacks. In: 25th International Technical Meeting of the Satellite Division of The Institute of Navigation 2012, ION GNSS 2012, vol. 5, pp. 3591–3605 (2012)

    Google Scholar 

  86. Nayyar, A., Jain, R., Mahapatra, B., Singh, A.: Cyber security challenges for smart cities. Driving the Development, Management, and Sustainability of Cognitive Cities, pp. 27–54 (2019)

    Google Scholar 

  87. Arana, P.: Benefits and Vulnerabilities of Wi-Fi Protected Access 2 (WPA2). Infs 612, 1–6 (2006)

    Google Scholar 

  88. Choi, M.K., Robles, R.J., Hong, C.H., Kim, T.H.: Wireless network security: vulnerabilities, threats and countermeasures. Int. J. Multimed. Ubiquitous Eng. 3(3), 77–86 (2008)

    Google Scholar 

  89. Thangaraj, P., Geethanjali, N., Kathiresan, K., Madhumathi, R.: Wifi infrastructure security system from vulnerable attacks. Int. J. Comput. Sci. Netw. Secur. 13(12), 2013 (2013)

    Google Scholar 

  90. Choudhary, G., Sharma, V., Gupta, T., Kim, J., You, I.: Internet of Drones (IoD): Threats, Vulnerability, and Security Perspectives, vol. 37, pp. 1–13 (2018)

    Google Scholar 

  91. Arinze Sunday, N.: Wireless Local Area Network (WLAN): Security Risk Assessment and Countermeasures, pp. 1–52. Blekinge Inst. Technol. Sch. (2008)

    Google Scholar 

  92. Waliullah, M., Gan, D.: Wireless LAN security threats & vulnerabilities: a literature review. Int. J. Adv. Comput. Sci. Appl. 5(1), 176–183 (2014). https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  93. Farrukh Khan, M.: WLAN security: issues and solutions. Handbook of Wireless Local Area Networks: Applications, Technology, Security, vol. 16, no. 1, pp. 449–457 (2005)

    Google Scholar 

  94. Rodday, N.M., De Schmidt, R.O., Pras, A.: Exploring security vulnerabilities of unmanned aerial vehicles. In: Proceedings of NOMS 2016—2016 IEEE/IFIP Network Operations and Management Symposium, Apr, pp. 993–994 (2016). https://doi.org/10.1109/noms.2016.7502939

  95. Choudhary, G., Sharma, V., Gupta, T., Kim, J., You, I.: Internet of Drones (IoD): Threats, Vulnerability, and Security Perspectives (2018)

    Google Scholar 

  96. Javaid, A.Y.: Cyber Security Threat Analysis and Attack Simulation for Unmanned Aerial Vehicle Network (2015)

    Google Scholar 

  97. Flynt, J.: What Sensors Do Drones Use? (2019)

    Google Scholar 

  98. Petracca, G., Sun, Y., Jaeger, T., Atamli, A.: AuDroid: preventing attacks on audio channels in mobile devices. In: ACM International Conference Proceeding Series, 7–11 Dec, pp. 181–190 (2015). https://doi.org/10.1145/2818000.2818005

  99. Petracca, G., Marvel, L.M., Swami, A., Jaeger, T.: Agility maneuvers to mitigate inference attacks on sensed location data. In: Proceedings of MILCOM 2016—2016 IEEE Military Communications Conference, pp. 259–264 (2016). https://doi.org/10.1109/milcom.2016.7795336

  100. Petracca, G., Reineh, A.A., Sun, Y., Grossklags, J., Jaeger, T.: Aware: preventing abuse of privacy-sensitive sensors via operation bindings. In: Proceedings of the 26th USENIX Conference on Security Symposium, pp. 379–396 (2017)

    Google Scholar 

  101. Petracca, G., Atamli, A., Sun, Y., Grossklags, J., Jaeger, T.: Aware: Controlling App Access to I/O Devices on Mobile Platforms (2016)

    Google Scholar 

  102. Sikder, A.K., Petracca, G., Aksu, H., Jaeger, T., Uluagac, A.S.: A Survey on Sensor-Based Threats to Internet-of-Things (IoT) Devices and Applications (2018)

    Google Scholar 

  103. Lonzetta, A.M., Cope, P., Campbell, J., Mohd, B.J., Hayajneh, T.: Security vulnerabilities in bluetooth technology as used in IoT. J. Sens. Actuator Netw. 7(3), 1–26 (2018). https://doi.org/10.3390/jsan7030028

    Article  Google Scholar 

  104. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.: BIAS: Bluetooth Impersonation AttackS, pp. 549–562 (2020). https://doi.org/10.1109/sp40000.2020.00093

  105. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.: BIAS: Bluetooth Impersonation AttackS. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 549–562 (2020). https://doi.org/10.1109/sp40000.2020.00093

  106. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.: The knob is broken: exploiting low entropy in the encryption key negotiation of Bluetooth BR/EDR. In: SEC’19: Proceedings of the 28th USENIX Conference on Security Symposium, pp. 1047–1061 (2019)

    Google Scholar 

  107. Spruit, M., Wester, W.: RFID Security and Privacy: Threats and Countermeasures (2013)

    Google Scholar 

  108. Peris-lopez, P., Hernandez-castro, J.C., Estevez-tapiador, J.M.: RFID system: a survey on security threats and proposed solutions, vol. 4217 (2006). https://doi.org/10.1007/11872153

  109. Lau, F., Rubin, S.H., Smith, M.H., Trajković, L.: Distributed denial of service attacks. Proceedings of IEEE International Conference on Systems, Man and Cybernetics vol. 3, pp. 2275–2280 (2000). https://doi.org/10.1109/icsmc.2000.886455

  110. Chen, J., Feng, Z., Wen, J.Y., Liu, B., Sha, L.: A container-based DoS attack-resilient control framework for real-time UAV systems. In: Proceedings of 2019 Design, Automation & Test in Europe Conference & Exhibition, DATE 2019, pp. 1222–1227 (2019). https://doi.org/10.23919/date.2019.8714888

  111. D. Moore, G. M. Voelker, and S. Savage, “Inferring internet denial-of-service activity, Proc. 10th USENIX Secur. Symp., vol. 24, no. 2, pp. 115–139, 2001

    Google Scholar 

  112. Gudla, C., Rana, S., Sung, A.H.: Defense Techniques Against Cyber Attacks on Unmanned Aerial Vehicles, pp. 110–116 (2018)

    Google Scholar 

  113. Compton, S.: 802. 11 Denial of Service Attacks and Mitigation (2019)

    Google Scholar 

  114. Imperva: Man in the middle (MITM) attack (2020) [online]. Available at: https://www.imperva.com/learn/application-security/man-in-the-middle-attack-mitm/

  115. Dahlman, E., Lagrelius, K.: A Game of Drones: Cyber Security in (2019)

    Google Scholar 

  116. Rani, C., Modares, H., Sriram, R., Mikulski, D., Lewis, F.L.: Security of unmanned aerial vehicle systems against cyber-physical attacks. J. Def. Model. Simul. 13(3), 331–342 (2016). https://doi.org/10.1177/1548512915617252

    Article  Google Scholar 

  117. Mpitziopoulos, A., Gavalas, D., Konstantopoulos, C., Pantziou, G.: A survey on jamming attacks and countermeasures in WSNs. IEEE Commun. Surv. Tutor. 11(4), 42–56 (2009). https://doi.org/10.1109/SURV.2009.090404

    Article  Google Scholar 

  118. Arthur, M.P.: Detecting signal spoofing and jamming attacks in UAV networks using a lightweight IDS. In: CITS 2019—Proceeding of the 2019 International Conference on Computer, Information and Telecommunication Systems, pp. 1–5 (2019). https://doi.org/10.1109/cits.2019.8862148

  119. Hartmann, K., Steup, C.: The vulnerability of UAVs to cyber attacks—an approach to the risk assessment. In: Proceedings of the 5th International Conference on Cyber Conflict, pp. 1–23. IEEE (2013)

    Google Scholar 

  120. Paganini, P.: A Hacker Developed Maldrone, the First Malware for Drones (2015) [online]. Available at: http://securityaffairs.co/wordpress/32767/hacking/maldrone-malware-for-drones.html

  121. Gil Casals, S., Owezarski, P., Descargues, G.: Generic and autonomous system for airborne networks cyber-threat detection. In: AIAA/IEEE Digital Avionics Systems Conference—Proceedings, pp. 1–14 (2013). https://doi.org/10.1109/dasc.2013.6712578

  122. Zhi, Y., Fu, Z., Sun, X., Yu, J.: Security and privacy issues of UAV: a survey. Mob. Netw. Appl. 25(1), 95–101 (2020). https://doi.org/10.1007/s11036-018-1193-x

    Article  Google Scholar 

  123. European Commission: European Commission Adopts Rules on Operating Drones (2019) [online]. Available at: https://ec.europa.eu/transport/modes/air/news/2019-05-24-rules-operating-drones_en

  124. Dahiya, S., Garg, M.: Proceedings of UASG 2019—Unmanned Aerial Vehicles: Vulnerability to Cyber Attacks, vol. 51. Springer (2020)

    Google Scholar 

  125. Sedjelmaci, H., Senouci, S.M., Messous, M.A.: How to detect cyber-attacks in unmanned aerial vehicles network? In: 2016 IEEE Global Communications Conference, GLOBECOM 2016—Proceedings (2016). https://doi.org/10.1109/glocom.2016.7841878

  126. Condomines, J., Zhang, R., Larrieu, N.: Ad Hoc Networks Network intrusion detection system for UAV ad-hoc communication: from methodology design to real test validation. Ad Hoc Netw. 90, 101759 (2019). https://doi.org/10.1016/j.adhoc.2018.09.004

    Article  Google Scholar 

  127. Choudhary, G. et al.: Intrusion Detection Systems for Networked Unmanned Aerial Vehicles: A Survey

    Google Scholar 

  128. Nassi, B., Shabtai, A., Masuoka, R., Elovici, Y.: SoK—Security and Privacy in the Age of Drones: Threats, Challenges, Solution Mechanisms, and Scientific Gaps, pp. 1–17 (2019)

    Google Scholar 

  129. Javaid, A.Y., Jahan, F., Sun, W.: Analysis of Global Positioning System-based attacks and a novel Global Positioning System spoofing detection/mitigation algorithm for unmanned aerial vehicle simulation. Simulation 93(5), 427–441 (2017). https://doi.org/10.1177/0037549716685874

    Article  Google Scholar 

  130. Eldosouky, A., Ferdowsi, A., Saad, W.: Drones in Distress : A Game-Theoretic Countermeasure for Protecting UAVs Against GPS Spoofing (2003)

    Google Scholar 

  131. Warner, J.S., Ph, D., Johnston, R.G., Ph, D.: GPS Spoofing Countermeasures (2003)

    Google Scholar 

  132. Camtepe, S.A., Scientific, T.C., Foo, E.: A Survey and Analysis of the GNSS Spoofing Threat and Countermeasures (2016). https://doi.org/10.1145/2897166

  133. Wu, Q., Mei, W., Zhang, R.: Safeguarding Wireless Network with UAVs: A Physical Layer Security Perspective, vol. 117583, pp. 1–15

    Google Scholar 

  134. Sharma, V.: Three-tier neural model for service provisioning over collaborative flying ad hoc networks. Neural Comput. Appl. (2016). https://doi.org/10.1007/s00521-016-2584-1

    Article  Google Scholar 

  135. Mead, J.: Prevention of Drone Jamming Using Hardware Sandboxing (2016)

    Google Scholar 

  136. Di Pietro, R., Oligeri, G., Tedeschi, P.: JAM-ME: Exploiting Jamming to Accomplish Drone Mission (2019). https://doi.org/10.1109/cns.2019.8802717

  137. Birnbach, S., Baker, R., Martinovic, I.: Wi-Fly?: Detecting Privacy Invasion Attacks by Consumer Drones (2017). https://doi.org/10.14722/ndss.2017.23335

  138. Busset, J. et al.: Detection and tracking of drones using advanced acoustic cameras. Unmanned/Unattended Sensors Sens. Networks XI; Advanced Free-Space Optical Communication Techniques and Applications, vol. 9647, p. 96470F (2015). https://doi.org/10.1117/12.2194309

  139. Jeon, S., Shin, J.W., Lee, Y.J., Kim, W.H., Kwon, Y.H., Yang, H.Y.: Empirical study of drone sound detection in real-life environment with deep neural networks. In: 25th European Signal Processing Conference, EUSIPCO 2017, pp. 1858–1862 (2017). https://doi.org/10.23919/eusipco.2017.8081531

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huu Phuoc Dai Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, H., Nguyen, D. (2021). Drone Application in Smart Cities: The General Overview of Security Vulnerabilities and Countermeasures for Data Communication. In: Krishnamurthi, R., Nayyar, A., Hassanien, A.E. (eds) Development and Future of Internet of Drones (IoD): Insights, Trends and Road Ahead. Studies in Systems, Decision and Control, vol 332. Springer, Cham. https://doi.org/10.1007/978-3-030-63339-4_7

Download citation

Publish with us

Policies and ethics