Skip to main content

Nanocellulose Production from Different Sources and Their Self-Assembly in Composite Materials

  • Living reference work entry
  • First Online:
Handbook of Nanocelluloses

Abstract

Cellulose derived from lignocellulosic biomass or microorganisms via fermentation can be transformed into nanocellulose (NC), i.e., cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs), applying mechanical, chemical, and enzymatic processes or a combination of the aforementioned methods. NC production from bacterial cellulose derived from renewable resources will be presented. This chapter will also focus on the colloidal properties of NC and its stability and interactions with other components at a nanoscale level. Preparation methods to obtain NC or high-performance nanomaterials will be discussed with special attention to ex situ structural modification of bacterial cellulose, highlighting advances over the last 10 years. Properties of these nanomaterials will be illustrated as an indispensable part of their electrostatic stabilization in NC suspensions and self-assembly into nanostructures either in pure NC or in nanocomposites. Results that are based on light scattering (LS), small angle scattering (SAS), and rheology techniques will be presented. This chapter attempts to give insight on correlation aspects between structure, dynamics, and interactions at the nanoscale and the properties of NC that are attractive for a broad spectrum of applications including sectors of biomedicine, food science, materials and characterization fields, and environmental science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Nanocellulose:

(NC)

Cellulose nanofibrils:

(CNFs)

Cellulose nanocrystals:

(CNCs)

Light scattering:

(LS)

Small angle scattering:

(SAS)

Small angle neutron scattering:

(SANS)

Small angle X-ray scattering:

(SAXS)

References

  1. Dunlop, M.J., Clemons, C., Reiner, R., Sabo, R., Agarwal, U.P., Bissessur, R., Sojoudiasli, H., Carreau, P.J., Acharya, B.: Towards the scalable isolation of cellulose nanocrystals from tunicates. Sci. Rep. 10(1), 19090 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. https://www.reportsanddata.com/report-detail/nanocellulose-market.

  3. Cacicedo, M.L., Castro, M.C., Servetas, I., Bosnea, L., Boura, K., Tsafrakidou, P., Dima, A., Terpou, A., Koutinas, A., Castro, G.R.: Progress in bacterial cellulose matrices for biotechnological applications. Bioresour. Technol. 213, 172–180 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Arcot, L.R., Gröschel, A.H., Linder, M.B., Rojas, O.J., Ikkala, O.: Self-assembly of native cellulose nanostructures. In: Handbook of Nanocellulose and Cellulose Nanocomposites, vol. 1, pp. 123–174 (2017)

    Chapter  Google Scholar 

  5. Yang, J., Han, C.-R., Duan, J.-F., Xu, F., Sun, R.-C.: Mechanical and viscoelastic properties of cellulose nanocrystals reinforced Poly(ethylene glycol) Nanocomposite Hydrogels. ACS Appl. Mater. Interfaces. 5(8), 3199–3207 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. Wang, D.-C., Yu, H.-Y., Qi, D., Ramasamy, M., Yao, J., Tang, F., Tam, K.C., Ni, Q.: Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors. ACS Appl. Mater. Interfaces. 11(27), 24435–24446 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. Thomas, B., Raj, M.C., AK, B., RM, H., Joy, J., Moores, A., Drisko, G.L., Sanchez, C.: Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 118(24), 11575–11625 (2018)

    Article  CAS  PubMed  Google Scholar 

  8. Mao, Y., Liu, K., Zhan, C., Geng, L., Chu, B., Hsiao, B.S.: Characterization of nanocellulose using small-angle neutron, X-ray, and dynamic light scattering techniques. J. Phys. Chem. B. 121(6), 1340–1351 (2017)

    Article  CAS  PubMed  Google Scholar 

  9. Schütz, C., Agthe, M., Fall, A.B.., Gordeyeva, K., Guccini, V., Salajková, M., Plivelic, T.S., Lagerwall, J.P.F., Salazar-Alvarez, G., Bergström, L.: Rod packing in chiral nematic cellulose nanocrystal dispersions studied by small-angle X-ray scattering and laser diffraction. Langmuir. 31(23), 6507–6513 (2015)

    Article  PubMed  CAS  Google Scholar 

  10. Qiao, C., Chen, G., Zhang, J., Yao, J.: Structure and rheological properties of cellulose nanocrystals suspension. Food Hydrocoll. 55, 19–25 (2016)

    Article  CAS  Google Scholar 

  11. Pennells, J., Godwin, I.D., Amiralian, N., Martin, D.J.: Trends in the production of cellulose nanofibers from non-wood sources. Cellulose. 27(2), 575–593 (2020)

    Article  CAS  Google Scholar 

  12. Biermann, C.J.: Academic Press, San Diego, (1996)

    Google Scholar 

  13. Nechyporchuk, O., Belgacem, M.N., Bras, J.: Production of cellulose nanofibrils: a review of recent advances. Ind. Crop. Prod. 93, 2–25 (2016)

    Article  CAS  Google Scholar 

  14. Blanco, A., Monte, M.C., Campano, C., Balea, A., Merayo, N., Negro, C.: Chapter 5 – nanocellulose for industrial use: Cellulose Nanofibers (CNF), Cellulose Nanocrystals (CNC), and Bacterial Cellulose (BC). In: Hussain, C.M. (ed.) Handbook of Nanomaterials for Industrial Applications, pp. 74–126. Elsevier (2018)

    Chapter  Google Scholar 

  15. Wang, Q.Q., Zhu, J.Y., Gleisner, R., Kuster, T.A., Baxa, U., McNeil, S.E.: Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose. 19(5), 1631–1643 (2012)

    Article  CAS  Google Scholar 

  16. Perumal, A.B.., Sellamuthu, P.S., Nambiar, R.B., Sadiku, E.R., Adeyeye, O.A.: Biocomposite reinforced with nanocellulose for packaging applications. In: Gnanasekaran, D. (ed.) Green Biopolymers and their Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore (2019)

    Google Scholar 

  17. Moriana, R., Vilaplana, F., Ek, M.: Cellulose nanocrystals from forest residues as reinforcing agents for composites: a study from macro- to nano-dimensions. Carbohydr. Polym. 139, 139–149 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. Chen, W., Yu, H., Liu, Y., Hai, Y., Zhang, M., Chen, P.: Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose. 18(2), 433–442 (2011)

    Article  CAS  Google Scholar 

  19. Oun, A.A., Rhim, J.-W.: Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: effect of isolation method. Mater. Lett. 168, 146–150 (2016)

    Article  CAS  Google Scholar 

  20. Mondragon, G., Fernandes, S., Retegi, A., Peña, C., Algar, I., Eceiza, A., Arbelaiz, A.: A common strategy to extracting cellulose nanoentities from different plants. Ind. Crop. Prod. 55, 140–148 (2014)

    Article  CAS  Google Scholar 

  21. Karimi, S., Tahir, P.M., Karimi, A., Dufresne, A., Abdulkhani, A.: Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr. Polym. 101, 878–885 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. Mahardika, M., Abral, H., Kasim, A., Arief, S., Asrofi, M.: Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers. 6(28) (2018)

    Google Scholar 

  23. Seta, F.T., An, X., Liu, L., Zhang, H., Yang, J., Zhang, W., Nie, S., Yao, S., Cao, H., Xu, Q., Bu, Y., Liu, H.: Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis. Carbohydr. Polym. 234, 115942 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. Soni, B., Hassan, E.B., Mahmoud, B.: Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr. Polym. 134, 581–589 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. Liu, Q., Lu, Y., Aguedo, M., Jacquet, N., Ouyang, C., He, W., Yan, C., Bai, W., Guo, R., Goffin, D., Song, J., Richel, A.: Isolation of high-purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, microwave-assisted hydrolysis, and microfluidization. ACS Sustain. Chem. Eng. 5(7), 6183–6191 (2017)

    Article  CAS  Google Scholar 

  26. Bian, H., Gao, Y., Yang, Y., Fang, G., Dai, H.: Improving cellulose nanofibrillation of waste wheat straw using the combined methods of prewashing, p-toluenesulfonic acid hydrolysis, disk grinding, and endoglucanase post-treatment. Bioresour. Technol. 256, 321–327 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. Oun, A.A., Rhim, J.-W.: Isolation of oxidized nanocellulose from rice straw using the ammonium persulfate method. Cellulose. 25(4), 2143–2149 (2018)

    Article  CAS  Google Scholar 

  28. Shao, X., Wang, J., Liu, Z., Hu, N., Liu, M., Xu, Y.: Preparation and characterization of porous microcrystalline cellulose from corncob. Ind. Crop. Prod. 151, 112457 (2020)

    Article  CAS  Google Scholar 

  29. Chandra, C.S.J., George, N., Narayanankutty, S.K.: Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr. Polym. 142, 158–166 (2016)

    Article  CAS  Google Scholar 

  30. Khawas, P., Deka, S.C.: Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr. Polym. 137, 608–616 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. Robles-García, M.Á., Del-Toro-Sánchez, C.L., Márquez-Ríos, E., Barrera-Rodríguez, A., Aguilar, J., Aguilar, J.A., Reynoso-Marín, F.J., Ceja, I., Dórame-Miranda, R., Rodríguez-Félix, F.: Nanofibers of cellulose bagasse from Agave tequilana Weber var. azul by electrospinning: preparation and characterization. Carbohydr. Polym. 192, 69–74 (2018)

    Article  PubMed  CAS  Google Scholar 

  32. Li, M., Wang, L.-j., Li, D., Cheng, Y.-L., Adhikari, B.: Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr. Polym. 102, 136–143 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, H., Chen, Y., Wang, S., Ma, L., Yu, Y., Dai, H., Zhang, Y.: Extraction and comparison of cellulose nanocrystals from lemon (Citrus limon) seeds using sulfuric acid hydrolysis and oxidation methods. Carbohydr. Polym. 238, 116180 (2020)

    Article  CAS  PubMed  Google Scholar 

  34. Rahbar Shamskar, K., Heidari, H., Rashidi, A.: Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Ind. Crop. Prod. 93, 203–211 (2016)

    Article  CAS  Google Scholar 

  35. Cannon, R.E., Anderson, S.M.: Biogenesis of bacterial cellulose. Crit. Rev. Microbiol. 17(6), 435–447 (1991)

    Article  CAS  PubMed  Google Scholar 

  36. Choi, S.M., Shin, E.J.: The nanofication and functionalization of bacterial cellulose and its applications. Nanomaterials. 10(3), 406 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  37. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. Wang, J., Tavakoli, J., Tang, Y.: Bacterial cellulose production, properties and applications with different culture methods – a review. Carbohydr. Polym. 219, 63–76 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. Chen, G., Wu, G., Alriksson, B., Chen, L., Wang, W., Jönsson, L.J., Hong, F.F.: Scale-up of production of bacterial nanocellulose using submerged cultivation. J. Chem. Technol. Biotechnol. 93(12), 3418–3427 (2018)

    Article  CAS  Google Scholar 

  40. Cheng, K.-C., Catchmark, J.M., Demirci, A.: Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules. 12(3), 730–736 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. Cazón, P., Vázquez, M.: Improving bacterial cellulose films by ex-situ and in-situ modifications: a review. Food Hydrocoll. 113, 106514 (2021)

    Article  CAS  Google Scholar 

  42. Dayal, M.S., Catchmark, J.M.: Mechanical and structural property analysis of bacterial cellulose composites. Carbohydr. Polym. 144, 447–453 (2016)

    Article  CAS  PubMed  Google Scholar 

  43. Vazquez, A., Foresti, M.L., Cerrutti, P., Galvagno, M.: Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J. Polym. Environ. 21(2), 545–554 (2013)

    Article  CAS  Google Scholar 

  44. Al-Abdallah, W., Dahman, Y.: Production of green biocellulose nanofibers by Gluconacetobacter xylinus through utilizing the renewable resources of agriculture residues. Bioprocess Biosyst. Eng. 36(11), 1735–1743 (2013)

    Article  CAS  PubMed  Google Scholar 

  45. Lin, D., Lopez-Sanchez, P., Li, R., Li, Z.: Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour. Technol. 151, 113–119 (2014)

    Article  CAS  PubMed  Google Scholar 

  46. Tsouko, E., Kourmentza, C., Ladakis, D., Kopsahelis, N., Mandala, I., Papanikolaou, S., Paloukis, F., Alves, V., Koutinas, A.: Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 16, 14832–14849 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tyagi, N., Suresh, S.: Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. J. Clean. Prod. 112, 71–80 (2016)

    Article  CAS  Google Scholar 

  48. Adebayo-Tayo, B.C., Akintunde, M.O., Sanusi, J.F.: Effect of different fruit juice media on bacterial cellulose production by Acinetobacter sp. BAN1 and Acetobacter pasteurianus PW1. J Adv Biol Biotechnol. 14(3), 1–9 (2017)

    Article  Google Scholar 

  49. Cheng, Z., Yang, R., Liu, X., Liu, X., Chen, H.: Green synthesis of bacterial cellulose via acetic acid pre-hydrolysis liquor of agricultural corn stalk used as carbon source. Bioresour. Technol. 234, 8–14 (2017)

    Article  CAS  PubMed  Google Scholar 

  50. Pacheco, G., Nogueira, C.R., Meneguin, A.B.., Trovatti, E., Silva, M.C.C., Machado, R.T.A., Ribeiro, S.J.L., da Silva Filho, E.C., da S. Barud, H: Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Ind. Crop. Prod. 107, 13–19 (2017)

    Article  CAS  Google Scholar 

  51. Andritsou, V., de Melo, E.M., Tsouko, E., Ladakis, D., Maragkoudaki, S., Koutinas, A.A., Matharu, A.S.: Synthesis and characterization of bacterial cellulose from citrus-based sustainable resources. ACS Omega. 3(8), 10365–10373 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tsouko, E., Papadaki, A., Papapostolou, H., Ladakis, D., Natsia, A., Koutinas, A., Kampioti, A., Eriotou, E., Kopsahelis, N.: Valorization of Zante currant side-streams for the production of phenolic-rich extract and bacterial cellulose: a novel biorefinery concept. J. Chem. Technol. Biotechnol. 95(2), 427–438 (2020)

    Article  CAS  Google Scholar 

  53. Trache, D., Hussin, M.H., Haafiz, M.K.M., Thakur, V.K.: Recent progress in cellulose nanocrystals: sources and production. Nanoscale. 9(5), 1763–1786 (2017)

    Article  CAS  PubMed  Google Scholar 

  54. Dunlop, M.J., Acharya, B., Bissessur, R.: Isolation of nanocrystalline cellulose from tunicates. J Environ Chem Eng. 6(4), 4408–4412 (2018)

    Article  CAS  Google Scholar 

  55. Samiee, S., Ahmadzadeh, H., Hosseini, M., Lyon, S.: Chapter 17 – Algae as a source of microcrystalline cellulose. In: Hosseini, M. (ed.) Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts, pp. 331–350. Woodhead Publishing (2019)

    Chapter  Google Scholar 

  56. Yu, S., Sun, J., Shi, Y., Wang, Q., Wu, J., Liu, J.: Nanocellulose from various biomass wastes: its preparation and potential usages towards the high value-added products. Environ Sci Ecotechnol, 100077 (2020)

    Google Scholar 

  57. Hua, K., Strømme, M., Mihranyan, A., Ferraz, N.: Nanocellulose from green algae modulates the in vitro inflammatory response of monocytes/macrophages. Cellulose. 22(6), 3673–3688 (2015)

    Article  CAS  Google Scholar 

  58. Wu, J., Zhu, W., Shi, X., Li, Q., Huang, C., Tian, Y., Wang, S.: Acid-free preparation and characterization of kelp (Laminaria japonica) nanocelluloses and their application in Pickering emulsions. Carbohydr. Polym. 236, 115999 (2020)

    Article  PubMed  CAS  Google Scholar 

  59. Bhutiya, P.L., Misra, N., Abdul Rasheed, M., Zaheer Hasan, S.: Nested seaweed cellulose fiber deposited with cuprous oxide nanorods for antimicrobial activity. Int. J. Biol. Macromol. 117, 435–444 (2018)

    Article  CAS  PubMed  Google Scholar 

  60. Yan, H., Chen, X., Song, H., Li, J., Feng, Y., Shi, Z., Wang, X., Lin, Q.: Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocoll. 72, 127–135 (2017)

    Article  CAS  Google Scholar 

  61. Vasconcelos, N.F., Feitosa, J.P.A., da Gama, F.M.P., Morais, J.P.S., Andrade, F.K., de Souza Filho Md, S.M., Rosa Md, F.: Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohydr. Polym. 155, 425–431 (2017)

    Article  CAS  PubMed  Google Scholar 

  62. Martínez-Sanz, M., Lopez-Rubio, A., Lagaron, J.M.: Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr. Polym. 85(1), 228–236 (2011)

    Article  CAS  Google Scholar 

  63. Martelli-Tosi, M., Masson, M.M., Silva, N.C., Esposto, B.S., Barros, T.T., Assis, O.B.G., Tapia-Blácido, D.R.: Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohydr. Polym. 198, 61–68 (2018)

    Article  CAS  PubMed  Google Scholar 

  64. Zinge, C., Kandasubramanian, B.: Nanocellulose based biodegradable polymers. Eur. Polym. J. 133, 109758 (2020)

    Article  CAS  Google Scholar 

  65. Li, J., Wei, X., Wang, Q., Chen, J., Chang, G., Kong, L., Su, J., Liu, Y.: Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr. Polym. 90(4), 1609–1613 (2012)

    Article  CAS  PubMed  Google Scholar 

  66. Shahbazi, P., Behzad, T., Heidarian, P.: Isolation of cellulose nanofibers from poplar wood and wheat straw: optimization of bleaching step parameters in a chemo-mechanical process by experimental design. Wood Sci. Technol. 51(5), 1173–1187 (2017)

    Article  CAS  Google Scholar 

  67. Papagiannopoulos, A.: Chapter 10 – Small-Angle Neutron Scattering (SANS). In: Thomas, S., Thomas, R., Zachariah, A.K., Mishra, R.K. (eds.) Microscopy Methods in Nanomaterials Characterization, pp. 339–361. Elsevier (2017)

    Chapter  Google Scholar 

  68. Papagiannopoulos, A.: Investigations of complex polymer-based nanoassemblies with small angle neutron scattering. In: Reimer, A. (ed.) Horizons in World Physics. Nova (2017)

    Google Scholar 

  69. Penttilä, P.A., Várnai, A., Fernández, M., Kontro, I., Liljeström, V., Lindner, P., Siika-aho, M., Viikari, L., Serimaa, R.: Small-angle scattering study of structural changes in the microfibril network of nanocellulose during enzymatic hydrolysis. Cellulose. 20(3), 1031–1040 (2013)

    Article  CAS  Google Scholar 

  70. Liu, Y., Agthe, M., Salajková, M., Gordeyeva, K., Guccini, V., Fall, A., Salazar-Alvarez, G., Schütz, C., Bergström, L.: Assembly of cellulose nanocrystals in a levitating drop probed by time-resolved small angle X-ray scattering. Nanoscale. 10(38), 18113–18118 (2018)

    Article  CAS  PubMed  Google Scholar 

  71. Rosén, T., Wang, R., Zhan, C., He, H., Chodankar, S., Hsiao, B.S.: Cellulose nanofibrils and nanocrystals in confined flow: Single-particle dynamics to collective alignment revealed through scanning small-angle x-ray scattering and numerical simulations. Phys. Rev. E 101(3-1), 032610 (2020)

    Google Scholar 

  72. Hossain, L., Raghuwanshi, V.S., Tanner, J., Wu, C.-M., Kleinerman, O., Cohen, Y., Garnier, G.: Structure and swelling of cross-linked nanocellulose foams. J. Colloid Interface Sci. 568, 234–244 (2020)

    Article  CAS  PubMed  Google Scholar 

  73. Horkay, F., Hammouda, B.: Small-angle neutron scattering from typical synthetic and biopolymer solutions. Colloid Polym. Sci. 286(6), 611–620 (2008)

    Article  CAS  Google Scholar 

  74. Waters, D.J., Engberg, K., Parke-Houben, R., Ta, C.N., Jackson, A.J., Toney, M.F., Frank, C.W.: Structure and mechanism of strength enhancement in interpenetrating polymer network hydrogels. Macromolecules. 44(14), 5776–5787 (2011)

    Article  CAS  Google Scholar 

  75. Papagiannopoulos, A., Pispas, S.: Protein- and Nanoparticle-Loaded Hydrogels Studied by Small-Angle Scattering and Rheology Techniques. Springer, Singapore (2018)

    Book  Google Scholar 

  76. Saba, N., Jawaid, M.: 4 – Recent advances in nanocellulose-based polymer nanocomposites. In: Jawaid, M., Boufi, S., Abdul Khalil, H.P.S. (eds.) Cellulose-Reinforced Nanofibre Composites, pp. 89–112. Woodhead Publishing (2017)

    Chapter  Google Scholar 

  77. Rajinipriya, M., Nagalakshmaiah, M., Robert, M., Elkoun, S.: Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain. Chem. Eng. 6(3), 2807–2828 (2018)

    Article  CAS  Google Scholar 

  78. Wang, W., Yu, Z., Alsammarraie, F.K., Kong, F., Lin, M., Mustapha, A.: Properties and antimicrobial activity of polyvinyl alcohol-modified bacterial nanocellulose packaging films incorporated with silver nanoparticles. Food Hydrocoll. 100, 105411 (2020)

    Article  CAS  Google Scholar 

  79. Li, M., Tian, X., Jin, R., Li, D.: Preparation and characterization of nanocomposite films containing starch and cellulose nanofibers. Ind. Crop. Prod. 123, 654–660 (2018)

    Article  CAS  Google Scholar 

  80. George, J., Siddaramaiah: High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr. Polym. 87(3), 2031–2037 (2012)

    Article  CAS  Google Scholar 

  81. Lin, N., Gèze, A., Wouessidjewe, D., Huang, J., Dufresne, A.: Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery. ACS Appl. Mater. Interfaces. 8(11), 6880–6889 (2016)

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, T., Cheng, Q., Ye, D., Chang, C.: Tunicate cellulose nanocrystals reinforced nanocomposite hydrogels comprised by hybrid cross-linked networks. Carbohydr. Polym. 169, 139–148 (2017)

    Article  CAS  PubMed  Google Scholar 

  83. Chen, W., Yu, H., Li, Q., Liu, Y., Li, J.: Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter. 7(21), 10360–10368 (2011)

    Article  CAS  Google Scholar 

  84. Chen, W., Li, Q., Wang, Y., Yi, X., Zeng, J., Yu, H., Liu, Y., Li, J.: Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem. 7(1), 154–161 (2014)

    Article  CAS  PubMed  Google Scholar 

  85. Foster, E.J., Moon, R.J., Agarwal, U.P., Bortner, M.J., Bras, J., Camarero-Espinosa, S., Chan, K.J., Clift, M.J.D., Cranston, E.D., Eichhorn, S.J., Fox, D.M., Hamad, W.Y., Heux, L., Jean, B., Korey, M., Nieh, W., Ong, K.J., Reid, M.S., Renneckar, S., Roberts, R., Shatkin, J.A., Simonsen, J., Stinson-Bagby, K., Wanasekara, N., Youngblood, J.: Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 47(8), 2609–2679 (2018)

    Article  CAS  PubMed  Google Scholar 

  86. Shang, Z., An, X., Seta, F.T., Ma, M., Shen, M., Dai, L., Liu, H., Ni, Y.: Improving dispersion stability of hydrochloric acid hydrolyzed cellulose nano-crystals. Carbohydr. Polym. 222, 115037 (2019)

    Article  CAS  PubMed  Google Scholar 

  87. Hamid, S.B.A., Zain, S.K., Das, R., Centi, G.: Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose. Carbohydr. Polym. 138, 349–355 (2016)

    Article  CAS  PubMed  Google Scholar 

  88. Chu, Y., Sun, Y., Wu, W., Xiao, H.: Dispersion properties of nanocellulose: a review. Carbohydr. Polym. 250, 116892 (2020)

    Article  CAS  PubMed  Google Scholar 

  89. Xu, Y., Atrens, A.D., Stokes, J.R.: Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods. J. Colloid Interface Sci. 496, 130–140 (2017)

    Article  CAS  PubMed  Google Scholar 

  90. Jin, L., Li, W., Xu, Q., Sun, Q.: Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose. 22(4), 2443–2456 (2015)

    Article  CAS  Google Scholar 

  91. Pei, A., Butchosa, N., Berglund, L.A., Zhou, Q.: Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter. 9(6), 2047–2055 (2013)

    Article  CAS  Google Scholar 

  92. Wohlhauser, S., Delepierre, G., Labet, M., Morandi, G., Thielemans, W., Weder, C., Zoppe, J.O.: Grafting polymers from cellulose nanocrystals: synthesis, properties, and applications. Macromolecules. 51(16), 6157–6189 (2018)

    Article  CAS  Google Scholar 

  93. Habibi, Y.: Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43(5), 1519–1542 (2014)

    Article  CAS  PubMed  Google Scholar 

  94. Larsson, E., Sanchez, C.C., Porsch, C., Karabulut, E., Wågberg, L., Carlmark, A.: Thermo-responsive nanofibrillated cellulose by polyelectrolyte adsorption. Eur. Polym. J. 49(9), 2689–2696 (2013)

    Article  CAS  Google Scholar 

  95. Wang, Z., Carlsson, D.O., Tammela, P., Hua, K., Zhang, P., Nyholm, L., Strømme, M.: Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano. 9(7), 7563–7571 (2015)

    Article  CAS  PubMed  Google Scholar 

  96. Wang, Y., Lwal, A.L.J., Wang, Q., Zhou, J., Dufresne, A., Lin, N.: Regulating surface sulfonation on cellulose nanocrystals and self-assembly behaviors. Chem. Commun. 56(74), 10958–10961 (2020)

    Article  CAS  Google Scholar 

  97. Habibi, Y., Lucia, L.A., Rojas, O.J.: Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010)

    Article  CAS  PubMed  Google Scholar 

  98. Revol, J.-F., Bradford, H., Giasson, J., Marchessault, R., Gray, D.: Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14(3), 170–172 (1992)

    Article  CAS  PubMed  Google Scholar 

  99. Khandelwal, M., Windle, A.H.: Self-assembly of bacterial and tunicate cellulose nanowhiskers. Polymer. 54(19), 5199–5206 (2013)

    Article  CAS  Google Scholar 

  100. Hu, Y., Abidi, N.: Distinct chiral nematic self-assembling behavior caused by different size-unified cellulose nanocrystals via a multistage separation. Langmuir. 32(38), 9863–9872 (2016)

    Article  CAS  PubMed  Google Scholar 

  101. Xiong, R., Yu, S., Smith, M.J., Zhou, J., Krecker, M., Zhang, L., Nepal, D., Bunning, T.J., Tsukruk, V.V.: Self-assembly of emissive nanocellulose/quantum dot nanostructures for chiral fluorescent materials. ACS Nano. 13(8), 9074–9081 (2019)

    Article  CAS  PubMed  Google Scholar 

  102. Chau, M., Sriskandha, S.E., Pichugin, D., Thérien-Aubin, H., Nykypanchuk, D., Chauve, G., Méthot, M., Bouchard, J., Gang, O., Kumacheva, E.: Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromolecules. 16(8), 2455–2462 (2015)

    Article  CAS  PubMed  Google Scholar 

  103. Wu, T., Kummer, N., De France, K.J., Campioni, S., Zeng, Z., Siqueira, G., Dong, J., Nyström, G.: Nanocellulose-lysozyme colloidal gels via electrostatic complexation. Carbohydr. Polym. 251, 117021 (2021)

    Article  CAS  PubMed  Google Scholar 

  104. Zhang, X., Elsayed, I., Navarathna, C., Schueneman, G.T., Hassan, E.B.: Biohybrid hydrogel and aerogel from self-assembled nanocellulose and nanochitin as a high-efficiency adsorbent for water purification. ACS Appl. Mater. Interfaces. 11(50), 46714–46725 (2019)

    Article  CAS  PubMed  Google Scholar 

  105. Heath, L., Thielemans, W.: Cellulose nanowhisker aerogels. Green Chem. 12(8), 1448–1453 (2010)

    Article  CAS  Google Scholar 

  106. Abe, K., Yano, H.: Formation of hydrogels from cellulose nanofibers. Carbohydr. Polym. 85(4), 733–737 (2011)

    Article  CAS  Google Scholar 

  107. Chen, Y., Liu, C., Chang, P.R., Cao, X., Anderson, D.P.: Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr. Polym. 76(4), 607–615 (2009)

    Article  CAS  Google Scholar 

  108. Thakur, M.K., Thakur, V.K., Prasanth, R.: Nanocellulose-based polymer nanocomposites: An introduction. Nanocellulose Polym Nanocomposites, 1–15 (2014)

    Google Scholar 

  109. Mandal, A., Chakrabarty, D.: Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly (vinyl alcohol) and nanocellulose from sugarcane bagasse. J. Ind. Eng. Chem. 20(2), 462–473 (2014)

    Article  CAS  Google Scholar 

  110. Jin, H., Cao, A., Shi, E., Seitsonen, J., Zhang, L., Ras, R.H., Berglund, L.A., Ankerfors, M., Walther, A., Ikkala, O.: Ionically interacting nanoclay and nanofibrillated cellulose lead to tough bulk nanocomposites in compression by forced self-assembly. J. Mater. Chem. B. 1(6), 835–840 (2013)

    Article  CAS  PubMed  Google Scholar 

  111. Martin, C., Jean, B.: Nanocellulose/polymer multilayered thin films: tunable architectures towards tailored physical properties. Nord Pulp Paper Res J. 29(1), 19–30 (2014)

    Article  CAS  Google Scholar 

  112. de Mesquita, J.P., Donnici, C.L., Pereira, F.V.: Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules. 11(2), 473–480 (2010)

    Article  PubMed  CAS  Google Scholar 

  113. Wang, M., Olszewska, A., Walther, A., Malho, J.-M., Schacher, F.H., Ruokolainen, J., Ankerfors, M., Laine, J., Berglund, L.A., Osterberg, M.: Colloidal ionic assembly between anionic native cellulose nanofibrils and cationic block copolymer micelles into biomimetic nanocomposites. Biomacromolecules. 12(6), 2074–2081 (2011)

    Article  CAS  PubMed  Google Scholar 

  114. Aulin, C., Johansson, E., Wågberg, L., Lindström, T.: Self-organized films from cellulose I nanofibrils using the layer-by-layer technique. Biomacromolecules. 11(4), 872–882 (2010)

    Article  CAS  PubMed  Google Scholar 

  115. Acciaro, R., Aulin, C., Wågberg, L., Lindström, T., Claesson, P.M., Varga, I.: Investigation of the formation, structure and release characteristics of self-assembled composite films of cellulose nanofibrils and temperature responsive microgels. Soft Matter. 7(4), 1369–1377 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristeidis Papagiannopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Selianitis, D., Efthymiou, MN., Tsouko, E., Papagiannopoulos, A., Koutinas, A., Pispas, S. (2021). Nanocellulose Production from Different Sources and Their Self-Assembly in Composite Materials. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-62976-2_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62976-2_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62976-2

  • Online ISBN: 978-3-030-62976-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics