Skip to main content

HDGI: A Human Device Gesture Interaction Ontology for the Internet of Things

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2020 (ISWC 2020)

Abstract

Gesture-controlled interfaces are becoming increasingly popular with the growing use of Internet of Things (IoT) systems. In particular, in automobiles, smart homes, computer games and Augmented Reality (AR)/Virtual Reality (VR) applications, gestures have become prevalent due to their accessibility to everyone. Designers, producers, and vendors integrating gesture interfaces into their products have also increased in numbers, giving rise to a greater variation of standards in utilizing them. This variety can confuse a user who is accustomed to a set of conventional controls and has their own preferences. The only option for a user is to adjust to the system even when the provided gestures are not intuitive and contrary to a user’s expectations.

This paper addresses the problem of the absence of a systematic analysis and description of gestures and develops an ontology which formally describes gestures used in Human Device Interactions (HDI). The presented ontology is based on Semantic Web standards (RDF, RDFS and OWL2). It is capable of describing a human gesture semantically, along with relevant mappings to affordances and user/device contexts, in an extensible way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://docs.microsoft.com/en-au/hololens/.

  2. 2.

    See https://www.ultraleap.com/.

  3. 3.

    See https://www.oculus.com/quest/.

  4. 4.

    https://github.com/madhawap/human-device-gesture-interaction-ontology.

  5. 5.

    https://w3id.org/hdgi.

  6. 6.

    The prefixes denoted in the figure are: sosa: <http://www.w3.org/ns/sosa/>, time: <http://www.w3.org/2006/time#>, prov: <http://www.w3.org/ns/prov#>, fma: <http://purl.org/sig/ont/fma/>.

  7. 7.

    See http://ontologydesignpatterns.org.

  8. 8.

    https://github.com/madhawap/human-device-gesture-interaction-ontology/tree/master/v0.1/ontologyAlignments.

  9. 9.

    See https://unity.com/.

  10. 10.

    https://github.com/madhawap/human-device-gesture-interaction-ontology/blob/master/README.md.

  11. 11.

    https://w3id.org/hdgi/mappings-docs.

  12. 12.

    https://w3id.org/hdgi/mappings-api.

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  Google Scholar 

  2. Brown, D.C., Blessing, L.: The relationship between function and affordance. In: ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers Digital Collection, pp. 155–160 (2005)

    Google Scholar 

  3. Choi, E., Kim, H., Chung, M.K.: A taxonomy and notation method for three-dimensional hand gestures. Int. J. Ind. Ergon. 44(1), 171–188 (2014)

    Article  Google Scholar 

  4. Haller, A., et al.: The modular SSN ontology: a joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation. Semanti. Web 10(1), 9–32 (2019). https://doi.org/10.3233/SW-180320

    Article  Google Scholar 

  5. Janowicz, K., Haller, A., Cox, S.J., Le Phuoc, D., Lefrançois, M.: Sosa: a lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 56, 1–10 (2019)

    Article  Google Scholar 

  6. Khairunizam, W., Ikram, K., Bakar, S.A., Razlan, Z.M., Zunaidi, I.: Ontological framework of arm gesture information for the human upper body. In: Hassan, M.H.A. (ed.) Intelligent Manufacturing & Mechatronics. LNME, pp. 507–515. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8788-2_45

    Chapter  Google Scholar 

  7. Maier, J.R., Fadel, G.M.: Affordance-based methods for design. In: ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers Digital Collection, pp. 785–794 (2003)

    Google Scholar 

  8. McNeill, D.: Hand and Mind: What Gestures Reveal About Thought. University of Chicago press (1992)

    Google Scholar 

  9. Mitra, S., Acharya, T.: Gesture recognition: a survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(3), 311–324 (2007)

    Article  Google Scholar 

  10. Morris, M.R., et al.: Reducing legacy bias in gesture elicitation studies. Interact. 21(3), 40–45 (2014)

    Article  Google Scholar 

  11. Norman, D.A.: The Psychology of Everyday Things. Basic books (1988)

    Google Scholar 

  12. Ousmer, M., Vanderdonckt, J., Buraga, S.: An ontology for reasoning on body-based gestures. In: Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 1–6 (2019)

    Google Scholar 

  13. Riener, A.: Gestural interaction in vehicular applications. Comput. 45(4), 42–47 (2012)

    Article  Google Scholar 

  14. Rosse, C., Mejino, J.: The Foundational Model of Anatomy Ontology. In: Burger, A., Davidson, D., Baldock, R. (eds.) Anatomy Ontologies for Bioinformatics: Principles and Practice, vol. 6, pp. 59–117. Springer, London (2007). https://doi.org/10.1007/978-1-84628-885-2_4

    Chapter  Google Scholar 

  15. Scoditti, A., Blanch, R., Coutaz, J.: A novel taxonomy for gestural interaction techniques based on accelerometers. In: Proceedings of the 16th international conference on Intelligent user interfaces, pp. 63–72 (2011)

    Google Scholar 

  16. Stephanidis, C., et al.: Seven HCI grand challenges. Int. J. Hum. Comput. Interact. 35(14), 1229–1269 (2019)

    Article  Google Scholar 

  17. Villarreal Narvaez, S., Vanderdonckt, J., Vatavu, R.D., Wobbrock, J.O.: A systematic review of gesture elicitation studies: what can we learn from 216 studies? In: ACM conference on Designing Interactive Systems (DIS’20) (2020)

    Google Scholar 

  18. Wobbrock, J.O., Aung, H.H., Rothrock, B., Myers, B.A.: Maximizing the guessability of symbolic input. In: CHI’05 extended abstracts on Human Factors in Computing Systems, pp. 1869–1872 (2005)

    Google Scholar 

  19. Yang, L., Huang, J., Feng, T., Hong-An, W., Guo-Zhong, D.: Gesture interaction in virtual reality. Virtual Reality Intell. Hardware. 1(1), 84–112 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhawa Perera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perera, M., Haller, A., Rodríguez Méndez, S.J., Adcock, M. (2020). HDGI: A Human Device Gesture Interaction Ontology for the Internet of Things. In: Pan, J.Z., et al. The Semantic Web – ISWC 2020. ISWC 2020. Lecture Notes in Computer Science(), vol 12507. Springer, Cham. https://doi.org/10.1007/978-3-030-62466-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62466-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62465-1

  • Online ISBN: 978-3-030-62466-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics