Skip to main content

Nanoelectronics Devices (Field-Effect Transistors, Electrochromic Devices, Light-Emitting Diodes, Dielectrics, Neurotransmitters)

  • Chapter
  • First Online:
Advances in Hybrid Conducting Polymer Technology

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Nanoelectronics is one of the exciting thrust areas which bring conventional electronics and nanotechnology together. These are governed with a motive to make smaller devices ensure their efficiencies remain the same as the conventional one. In recent decades, the field has been significantly emerging owing to its availability of different nanomaterials. Nanoelectronics devices can be constructed in many forms using various nanostructured materials, conducting polymers, and so on. Depending upon the different existing materials on constructing nanoelectronics devices, polymers are one of the chiefly used host matrices for nanomaterials to make the devices in practical ways. These kinds of devices are usually constructed through compositing with nanomaterials, films in the form of coating, and in some instances, it can be used on their own. The main features of conducting polymers are its inherent flexibility and its conductive nature, which makes it well-positioned for wearable electronics, transparent electronics, and nanoelectronics devices. This chapter more keenly focuses on conducting polymers and its composites for various nanoelectronics devices such as field-effect transistors (FETs), electrochromic displays, light-emitting diodes (LEDs), dielectrics, and neurotransmitters. This chapter will also provide insights into each aspect of the conducting polymers applications with its future trends and opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das, T.K., Prutsy, S.: Review on conducting polymers and their applications. Polym-Plast. Technol. 51, 1487 (2012)

    Article  Google Scholar 

  2. Ramos, P., Cruz, M.A.E., Tovani, C.B., Ciancaglini, P.: Biomedical applications of nanotechnology. Biophys. Rev. 9, 79 (2017)

    Article  Google Scholar 

  3. M. Kesavan, A. Arulraj, K. Rajendran, P. Anbarasu, P. Anandha Ganesh, D. Jeyakumar, M. Ramesh: Performance of dye-sensitized solar cells employing polymer gel as an electrolyte and the influence of nano-porous materials as fillers. Mater. Res. Exp., 5(11)5305 (2018)

    Google Scholar 

  4. Lele, A.: Role of Nanotechnology in Defence. Strat. Anal. 33, 229 (2009)

    Google Scholar 

  5. Arulraj, A., Ramesh, M., Subramanian, B., Senguttuvan, G.: In-situ temperature and thickness control grown 2D-MoS2 via pulsed laser ablation for photovoltaic devices. Sol. Energy 174, 286 (2018)

    Google Scholar 

  6. Andersson, B.P., Nilsson, D., Svensson, P., Chen, M., Malmström, A., Remonen, T.: Active matrix displays based on all‐organic electrochemical smart pixels printed on paper. Adv. Mater. 20, 1460 (2010)

    Google Scholar 

  7. Argun, A.A., Aubert, P., Thompson, B.C., Schwendeman, I., Gaupp, C.L., Hwang, J., Pinto, N.J., Tanner, D.B., Macdiarmid, A.G., Reynolds, J.R.: Multicolored electrochromism in polymers: structures and devices. Chem. Mater. 16, 4401 (2004)

    Article  Google Scholar 

  8. Gaupp, C.L., Welsh, D.M., Rauh, R.D., Reynolds, J.R.: Composite coloration efficiency measurements of electrochromic polymers based on 3,4-alkylenedioxythiophenes. Chem. Mater. 14, 3964 (2002)

    Article  Google Scholar 

  9. Facchetti, B.A., Yoon, M., Marks, T.J.: Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics. Adv. Mater. 17, 1705 (2005)

    Article  Google Scholar 

  10. Inzelt, G., Pineri, M., Schultze, J.W., Vorotyntsev, M.A.: Electron and proton conducting polymers: recent developments and prospects. Electrochem. Acta 45, 2403 (2000)

    Article  Google Scholar 

  11. Herrmann, S., Ritchie, C., Streba, C.: Polyoxometalate—conductive polymer composites for energy conversion, energy storage and nanostructured sensors. Dalton Trans. 44, 7092 (2015)

    Article  Google Scholar 

  12. Yang, H., Wei, L., Guan, J., Guo, Y., Wang, X., Yan, X., Zhang, S., Wei, Z., Guo, J.: Polymer nanocomposites for energy storage, energy saving, and anticorrosion. Mater. Chem. A 3, 14929 (2015)

    Article  Google Scholar 

  13. Kardas, G., Solmaz, R.: Electrochemical synthesis and characterization of a new conducting polymer: polyrhodanine. Appl. Surf. Sci. 253, 3402 (2007)

    Article  Google Scholar 

  14. Zhan, G., Yu, Y., Lu, L., Wang, E., Wujcik, S., We, J.: Conductive polymer nanocomposites: a critical review of modern advanced devices. Mater. Chem. C 5, 1569 (2017)

    Article  Google Scholar 

  15. Kumar, R.C.: Sharma. Eur. Polymer J. 34, 1053 (1998)

    Article  Google Scholar 

  16. Inzelt, G.: Recent advances in the field of conducting polymers. J. Solid State Electrochem 21, 1965 (2017)

    Article  Google Scholar 

  17. Kesavan, M., Arulraj, A., Sannasi, V., Rajendran, K., Anbarasu, P., Jeyakumar, D., Ramesh, M.: Mater. Res. Innov. 24, 1 (2020)

    Article  Google Scholar 

  18. Ma, R., Wang, Y., Qi, H., Shi, C., Wei, G., Xiao, L., Huang, Z., Liu, S., Yu, H., Teng, C., Liu, H., Murugadoss, V.: Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: in vitro and in vivo evaluation. Compos. B 167, 396 (2019)

    Article  Google Scholar 

  19. Fernández, J., Bonastre, J., Molina, J., Cases, F.: Electrochemical study on an activated carbon cloth modified by cyclic voltammetry with polypyrrole/anthraquinone sulfonate and reduced graphene oxide as electrode for energy storage. Eur. Polymer J. 103, 179 (2018)

    Article  Google Scholar 

  20. Zhanga, Y., Ana, Y., Wua, L., Chena, H., Lia, Z., Doua, H., Murugadoss, V., Fanb, J., Zhanga, X., Mai, X., Guob, Z.: Metal-free energy storage systems: combining batteries with capacitors based on a methylene blue functionalized graphene cathode. J. Mater. Chem. A 7, 19668 (2019)

    Article  Google Scholar 

  21. Yin, Z., Zheng, Q.: Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: an overview. Adv. Energy Mater. 2, 179 (2012)

    Article  Google Scholar 

  22. Pan, L., Qiu, H., Dou, C., Li, Y., Pu, L., Xu, J., Shi, Y.: Int. J. Mat. Sci. 11, 2636 (2010)

    Google Scholar 

  23. Toshima, N., Hara, S.: Direct synthesis of conducting polymers from simple monomers. Prog. Polym. Sci. 20, 155 (1995)

    Article  Google Scholar 

  24. Bargon, J., Waltman, R.J.: Electrochemical synthesis of electrically conducting polymers from aromatic compounds. IBM J. Res. Develop. 27 (1983)

    Google Scholar 

  25. Kincal, A., Kumar, A.D., Child, J.R.: Reynolds Synth. Met. 92, 53 (1998)

    Article  Google Scholar 

  26. Rogers, J.A., Bao, Z., Raju, V.R.: Nonphotolithographic fabrication of organic transistors with micron feature sizes. Appl. Phys. Lett. 72, 2716 (1998)

    Article  Google Scholar 

  27. Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W.: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123 (2000)

    Article  Google Scholar 

  28. Park, J., Lee, S., Lee, H.H.: High-mobility polymer thin-film transistors fabricated by solvent-assisted drop-casting. Org. Electron. 7, 256 (2006)

    Article  Google Scholar 

  29. Wang, J., Swensen, D., Moses, A.J.H.: Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors. J. Appl. Phys. 93, 6137 (2003)

    Article  Google Scholar 

  30. Ofer, D., Crooks, R.M., Wrighton, M.S.: Potential dependence of the conductivity of highly oxidized polythiophenes, polypyrroles, and polyaniline: finite windows of high conductivity. J. Am. Chem. Soc. 112, 7869 (1990)

    Article  Google Scholar 

  31. Mccoy, C.H., Wrighton, M.S.: Potential-dependent conductivity of conducting polymers yields opportunities for molecule-based devices: a microelectrochemical push-pull amplifier based on two different conducting polymer transistors. Chem. Mater. 5, 914 (1993)

    Article  Google Scholar 

  32. Paul, E.W., Ricco, A.J., Wrighton, M.S.: Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. J. Phys. Chem. 89, 1441 (1985)

    Article  Google Scholar 

  33. Verilhac, J.M., LeBlevennec, G., Djurado, D., Rieutord, F., Chouiki, M., Travers, J.P.: Synth. Met. 156, 815 (2000)

    Article  Google Scholar 

  34. Zen, J., Pflaum, S., Hirschmann, W., Zhuang, F., Jaiser, U.: Asawapirom. Adv. Funct. Mater. 14, 757 (2004)

    Article  Google Scholar 

  35. Park, Y.D., Kim, D.H., Jang, Y., Cho, J.H., Hwang, M., Lee, H.S.: Effect of side chain length on molecular ordering and field-effect mobility in poly(3-alkylthiophene) transistors. Org. Electron. 7, 514 (2006)

    Article  Google Scholar 

  36. Sirringhaus, P.J., Brown, R.H., Friend, M.M., Nielsen, K., Bechgaard, B.M.W.: Langeveld- Voss. Synth. Met. 111, 129 (2000)

    Article  Google Scholar 

  37. Surin, M., Leclere, Ph., Lazzaroni, R., Yuen, J.D., Wang, G., Moses, D.: Relationship between the microscopic morphology and the charge transport properties in poly(3-hexylthiophene) field-effect transistors. J. Appl. Phys. 100, 033712 (2006)

    Article  Google Scholar 

  38. Yan, Y., Huang, L.B., Zhou, Y., Han, S.T., Zhou, L., Zhuang, J., Xu, Z.X., Roy, V.A.L.: Self-aligned, full solution process polymer field-effect transistor on flexible substrates. Sci. Rep. 5, 15770 (2015)

    Article  Google Scholar 

  39. Knopfmacher, O., Hammock, M.L., Appleton, A.L., Schwartz, G., Mei, J., Lei, T., Pei, J., Bao, Z.: Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Comm. 5, 2954 (2014)

    Article  Google Scholar 

  40. Lee, J.G., Seol, Y.G., Lee, N.E.: Polymer thin film transistor with electroplated source and drain electrodes on a flexible substrate. Thin Solid Films 515, 805 (2006)

    Article  Google Scholar 

  41. Seol, Y.G., Lee, J.G., Lee, N.E., Lee, S.S., Ahn, J.: Electrical characteristics of poly(3-hexylthiophene) organic thin film transistor with electroplated metal gate electrodes on polyimide. Thin Solid Films 515, 5065 (2007)

    Article  Google Scholar 

  42. Xue, F., Liu, Z., Su, Y., Varahramyan, K.: Inkjet printed silver source/drain electrodes for low-cost polymer thin film transistors. Microelectron. Eng. 83, 298 (2006)

    Article  Google Scholar 

  43. Araki, S., Nakamura, K., Kobayashi, K., Tsuboi, A., Kobayashi, N.: Electrochemical optical-modulation device with reversible transformation between transparent, mirror, and black. Adv. Mater. 24, OP122 (2012)

    Google Scholar 

  44. Deb, S.K.: Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag. 27, 801 (1973)

    Article  Google Scholar 

  45. Bulloch, R.H., Kerszulis, J.A., Dyer, A.L., Reynolds, J.R.: Mapping the broad CMY subtractive primary color gamut using a dual-active electrochromic device. ACS Appl. Mater. Interfaces 6, 6623 (2014)

    Article  Google Scholar 

  46. Liu, D.Y., Chilton, A.D., Shi, P., Craig, M.R., Miles, S.D., Dyer, A.L., Ballarotto, V.W., Reynolds, J.R.: In situ spectroscopic analysis of sub-second switching polymer electrochromes. Adv. Funct. Mater. 21, 4535 (2011)

    Google Scholar 

  47. Beaujuge, P.M., Reynolds, J.R.: Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 110, 268 (2010)

    Article  Google Scholar 

  48. Amb, C.M., Dyer, A.L., Reynolds, J.R.: Navigating the color palette of solution-processable electrochromic polymers. Chem. Mater. 23, 397 (2011)

    Article  Google Scholar 

  49. Mastragostino, M.: Electrochromic devices. In: Scrosati, B. (ed.) Applications of Electroactive Polymers. Chapman & Hall, London.

    Google Scholar 

  50. Kobayashi, N.: Electrochromic Displays. Handbook of Visual Display Technology. Springer Publishers (2015)

    Google Scholar 

  51. Brooke, R., Edberg, J., Iandolo, D., Berggren, M., Crispin, X., Engquist, I.: Controlling the electrochromic properties of conductive polymers using UV-light. J. Mater. Chem. C 6, 4663 (2018)

    Article  Google Scholar 

  52. Pope, M., Kallmann, H., Magnante, P.J.: Chem. Phys. 38, 2042 (1963)

    Google Scholar 

  53. Helfrich, W., Schneider, W.G.: Recombination radiation in anthracene crystals. Phys. Rev. Lett. 14, 229 (1965)

    Article  Google Scholar 

  54. Tang, C.W., Vanslyke, S.A.: Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913 (1987)

    Article  Google Scholar 

  55. Adachi, C., Tsutsui, T., Saito, S.: Organic electroluminescent device having a hole conductor as an emitting layer. Appl. Phys. Lett. 55, 1489 (1989)

    Article  Google Scholar 

  56. Burroughes, D.D.C., Bradley, A.R., Brown, R.N., Marks, K., Mackay, R.H., Friend, P.L., Burns, A.B.: Holmes. Nature 347, 539 (1990)

    Article  Google Scholar 

  57. Braun, D., Heeger, A.J.: Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 58, 1982 (1991)

    Article  Google Scholar 

  58. Grüner, J., Cacialli, F., Friend, R.H., Emission enhancement in single‐layer conjugated polymer microcavities. J. Appl. Phys. 80, 207 (1996)

    Google Scholar 

  59. Niu, B.Y.H., Liu, M.S., Ka, J.W., Bardeker, J., Zin, M.T., Schofield, R., Chi, Y., Jen, A.K.Y.: Crosslinkable hole-transport layer on conducting polymer for high-efficiency white polymer light-emitting diodes. Adv. Mater. 19, 300 (2007)

    Article  Google Scholar 

  60. Oh, Y., Kim, S., Baik, H.K., Jeong, U.: Conducting polymer dough for deformable electronics. Adv. Mater. 28, 4455 (2016)

    Article  Google Scholar 

  61. Huang, X., Jiang, P.: Adv. Mater. 1 (2014)

    Google Scholar 

  62. . Zhang, L., Wang, W., Wang, X., Bass, P., Cheng, Z., Zhang, L., Wang, W., Wang, X., Bass, P., Cheng, Z.: Appl. Phy. Lett. 103, 232903 (2014)

    Google Scholar 

  63. Yu, S., Qin, F., Wang, G.: Improving the dielectric properties of poly(vinylidene fluoride) composites by using poly(vinyl pyrrolidone)-encapsulated polyaniline nanorods. J. Mater. Chem. C. 4, 1504 (2016)

    Article  Google Scholar 

  64. Liao, X., Ye, W., Chen, L., Jiang, S., Wang, G., Zhang, L., Hou, H.: Flexible hdC-G reinforced polyimide composites with high dielectric permittivity. Compos. A Appl. Sci. Manuf. 101, 50 (2017)

    Article  Google Scholar 

  65. Xu, W., Ding, Y., Yu, Y., Jiang, S., Chen, L., Hou, H.: Highly foldable PANi@CNTs/PU dielectric composites toward thin-film capacitor application. Mater. Lett. 192, 25 (2017)

    Article  Google Scholar 

  66. Nambiar, S., Yeow, J.T.W.: Biosens. Bioelectron. 26, 1826 (2011)

    Google Scholar 

  67. Moon, J.M., Thapliyal, N., Hussain, K.K., Goyal, R.N., Shim, Y.B.: Conducting polymer-based electrochemical biosensors for neurotransmitters: a review. Biosens. Bioelectron. 102, 540 (2018)

    Article  Google Scholar 

  68. Aydemir, N., Malmstrom, J., Sejdic, J.T.: Phy. Chem. Chem. Phy. 1, 1 (2013)

    Google Scholar 

  69. Ardakani, Z.T., Hosu, O., Cristea, C., Ardakani, M.M., Marrazza, G.: Localization of sliding movements using soft tactile sensing systems with three-axis accelerometers. Sensor 19, 2036 (2019)

    Article  Google Scholar 

  70. Ou, Y., Buchanan, A.M., Witt, C.E., Hashemi, P.: Frontiers in electrochemical sensors for neurotransmitter detection: towards measuring neurotransmitters as chemical diagnostics for brain disorders. Anal. Methods 11, 2738 (2019)

    Article  Google Scholar 

  71. Fayemi, O.E., Adekunle, A.S., Kumaraswamy, B.E., Ebenso, E.E., J. Electroanan. Chem. 818, 236 (2018)

    Google Scholar 

  72. Tsele, T.P., Adekunle, A.S., Fayemi, O.E., Ebenso, E.E.: Electrochemical detection of epinephrine using polyaniline nanocomposite films doped with TiO2 and RuO2 nanoparticles on multi-walled carbon nanotube. Electro. Chem. Acta 243, 331 (2017)

    Article  Google Scholar 

  73. Yan, W., Feng, X., Chen, X., Li, X., Zhu, J.J.: BioElectrochem. 72, 21 (2008)

    Article  Google Scholar 

  74. Feng, X., Zhang, Y., Yan, Z., Chen, N., Ma, Y., Liu, X., Yang, X., Hou, W.: J. Mater. Chem. A 1, 9780 (2013)

    Google Scholar 

  75. Tertis, M., Cernat, A., Lacatis, D., Florea, A., Bogdan, D., Sucia, M., Sandulescu, R., Cristea, C.: Highly selective electrochemical detection of serotonin on polypyrrole and gold nanoparticles-based 3D architecture. Electrochem. Commun. 75, 43 (2017)

    Google Scholar 

  76. Cesarino, I., Galesco, H.V., Machado, S.A.S.: Determination of serotonin on platinum electrode modified with carbon nanotubes/polypyrrole/silver nanoparticles nanohybrid. Mater. Sci. Eng. C 40, 49 (2014)

    Google Scholar 

  77. Xu, G., Li, B., Cui, X.T., Ling, L., Luo, X.: Electrodeposited conducting polymer PEDOT doped with pure carbon nanotubes for the detection of dopamine in the presence of ascorbic acid. Sens. Actuat. B Chem. 188, 405 (2013)

    Article  Google Scholar 

  78. Qian, Y., Ma, C., Zhang, S., Gao, J., Liu, M., Xie, K., Wang, S., Sun, K., Song, H.: High performance electrochemical electrode based on polymeric composite film for sensing of dopamine and catechol. Sens. Actuat. B Chem. 255, 1655 (2018)

    Google Scholar 

  79. Aleandar, S., Baraneedharan, P., Shriya, B., Ramaprabhu, S.: Highly sensitive and selective non enzymatic electrochemical glucose sensors based on graphene oxide-molecular imprinted polymer. Mater. Sci. Eng. C 78, 124 (2017)

    Article  Google Scholar 

  80. Wei, F., Xu, G., Wu, Y., Wang, X., Yang, J., Liu, L., Zhou, P., Hu, Q.: Molecularly imprinted polymers on dual-color quantum dots for simultaneous detection of norepinephrine and epinephrine. Sens. Actuat. B Chem. 229, 38 (2016)

    Article  Google Scholar 

  81. Zhao, X., Cui, Y., He, Y., Wang, S., Wang, J.: Sens. Actuat. B Chem. 304, 1 (2020)

    Google Scholar 

Download references

Acknowledgments

The author Dr. Arunachalam Arulraj duly acknowledges the FONDECYT Postdoctoral Fellowship (Project No.: 3200076), University of Concepcion, Concepcion, Chile, Santiago for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Percy J. Sephra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sephra, P.J., Baraneedharan, P., Arulraj, A. (2021). Nanoelectronics Devices (Field-Effect Transistors, Electrochromic Devices, Light-Emitting Diodes, Dielectrics, Neurotransmitters). In: Shahabuddin, S., Pandey, A.K., Khalid, M., Jagadish, P. (eds) Advances in Hybrid Conducting Polymer Technology. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62090-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62090-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62089-9

  • Online ISBN: 978-3-030-62090-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics