Skip to main content

Neural Network Simulations of a Possible Role of the Hippocampus in Pavlovian Conditioning

  • Chapter
  • First Online:
Psychiatry and Neuroscience Update

Abstract

In this paper, we simulate the effects of hippocampal lesions on Pavlovian conditioning with an existing neural network model. According to the model, the hippocampus sends a diffuse discrepancy signal that modulates efficacies of synapses from primary sensory to polysensory areas. We hypothesize that this signal lessens the detrimental effects of momentary nonreinforcement and weaker cues on such efficacies in Pavlovian conditioning. Hippocampal lesions are thus hypothesized to exacerbate both detrimental effects. To test this hypothesis against some relevant animal evidence, we ran two computer simulations using simple feedforward neural networks with two hidden layers, designed according to the model. Hippocampal lesions were simulated by removing the networks’ hippocampal units. Networks were trained in various conditions involving momentary nonreinforcement and reinforcement of differently salient cues. The results were reasonably consistent with animal evidence that hippocampal lesion is more disruptive of long-delay than short-trace conditioning (Simulation 1) and backward more than contiguous-trace conditioning (Simulation 2). Implications, limitations, and future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Calvin NT, McDowell JJ. Unified-theory-of-reinforcement neural networks do not simulate the blocking effect. Behav Process. 2015;120:54–63. https://doi.org/10.1016/j.beproc.2015.08.008.

    Article  Google Scholar 

  2. Donahoe JW, Burgos JE, Palmer DC. A selectionist approach to reinforcement. J Exp Anal Behav. 1993;60(1):17–40. https://doi.org/10.1901/jeab.1993.60-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burgos JE, Donahoe JW. Unified principle of reinforcement: a reply to N. T. Calvin and J. J. McDowell. Behav Process. 2016;126:46–54. https://doi.org/10.1016/j.beproc.2016.03.003.

    Article  Google Scholar 

  4. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20(1):11–21. https://doi.org/10.1136/jnnp.20.1.11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zola-Morgan S, Squire LR, Amaral DG. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986;6(10):2950–67. https://doi.org/10.1523/JNEUROSCI.06-10-02950.1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akase E, Alkon DL, Disterhoft JF. Hippocampal lesions impair memory of short-delay conditioned eye blink in rabbits. Behav Neurosci. 1989;103(5):935–43. https://doi.org/10.1037/0735-7044.103.5.935.

    Article  CAS  PubMed  Google Scholar 

  7. Berger TW, Orr WB. Hippocampectomy selectively disrupts discrimination reversal conditioning of the rabbit nictitating membrane response. Behav Brain Res. 1983;8(1):49–68. https://doi.org/10.1016/0166-4328(83)90171-7.

    Article  CAS  PubMed  Google Scholar 

  8. Beylin AV, Gandhi CC, Wood GE, Talk AC, Matzel LD, Shors TJ. The role of the hippocampus in trace conditioning: temporal discontinuity or task difficulty? Neurobiol Learn Mem. 2001;76(3):447–61. https://doi.org/10.1006/nlme.2001.4039.

    Article  CAS  PubMed  Google Scholar 

  9. Chowdhury N, Quinn JJ, Fanselow MS. Dorsal hippocampus involvement in trace fear conditioning with long, but not short, trace intervals in mice. Behav Neurosci. 2005;119(5):1396–402. https://doi.org/10.1037/0735-7044.119.5.1396.

    Article  PubMed  Google Scholar 

  10. Clark RE, Squire LR. Classical conditioning and brain systems: the role of awareness. Science. 1998;280(5360):77–81. https://doi.org/10.1126/science.280.5360.77.

    Article  CAS  PubMed  Google Scholar 

  11. Moyer JR, Deyo RA, Disterhoft JF. Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behav Neurosci. 1990;104(2):243–52. https://doi.org/10.1037/0735-7044.104.2.243.

    Article  PubMed  Google Scholar 

  12. Port RL, Mikhail AA, Patterson MM. Differential effects of hippocampectomy on classically conditioned rabbit nictitating membrane response related to interstimulus interval. Behav Neurosci. 1985;99(2):200–8. https://doi.org/10.1037/0735-7044.99.2.200.

    Article  CAS  PubMed  Google Scholar 

  13. Schmaltz LW, Theios J. Acquisition and extinction of a classically conditioned response in hippocampectomized rabbits (Oryctolagus cuniculus). J Comp Physiol Psychol. 1972;79(2):328–33. https://doi.org/10.1037/h0032531.

    Article  CAS  PubMed  Google Scholar 

  14. Solomon PR, Vander Schaaf ER, Thompson RF, Weisz DJ. Hippocampus and trace conditioning of the rabbit’s classically conditioned nictitating membrane response. Behav Neurosci. 1986;100(5):729–44. https://doi.org/10.1037/0735-7044.100.5.729.

    Article  CAS  PubMed  Google Scholar 

  15. Ludvig EA, Sutton RS, Verbeek E, Kehoe EJ. A computational model of hippocampal function in trace conditioning. Adv Neural Inf Process Syst (NIPS-08). 2009;21:993–1000. Available from: https://papers.nips.cc/paper/3619-a-computational-model-of-hippocampal-function-in-trace-conditioning.

    Google Scholar 

  16. Rodriguez P, Levy WB. A model of hippocampal activity in trace conditioning: where is the trace? Behav Neurosci. 2001;115(6):1224–38. https://doi.org/10.1037/0735-7044.115.6.1224.

    Article  CAS  PubMed  Google Scholar 

  17. Yamazaki T, Tanaka S. A neural network model for trace conditioning. Int J Neural Syst. 2005;15(1–2):23–30. https://doi.org/10.1142/S0129065705000037.

    Article  PubMed  Google Scholar 

  18. Schmajuk NA, DiCarlo JJ. A neural network approach to hippocampal function in classical conditioning. Behav Neurosci. 1991;105(1):82–110. https://doi.org/10.1037/0735-7044.105.1.82.

    Article  CAS  PubMed  Google Scholar 

  19. Moustafa AA, Wufong E, Servatious RJ, Pang KCH, Gluck MA, Myers CE. Why trace and delay conditioning are sometimes (but not always) hippocampal dependent: a computational model. Brain Res. 2013;1493:48–67. https://doi.org/10.1016/j.brainres.2012.11.020.

    Article  CAS  PubMed  Google Scholar 

  20. Gluck MA, Myers CE. Hippocampal mediation of stimulus representation: a computational theory. Hippocampus. 1993;3(4):491–516. https://doi.org/10.1002/hipo.450030410.

    Article  CAS  PubMed  Google Scholar 

  21. Quinn JJ, Oommen SS, Morrison GE, Fanselow MS. Post-training excitotoxic lesions of the dorsal hippocampus attenuate forward trace, backward trace, and delay fear conditioning in a temporally specific manner. Hippocampus. 2002;12(4):495–504. https://doi.org/10.1002/hipo.10029.

    Article  PubMed  Google Scholar 

  22. Bangasser DA, Waxler DE, Santollo J, Shors TJ. Trace contiguity and the hippocampus: the importance of contiguity. J Neurosci. 2006;26(34):8702–6. https://doi.org/10.1523/JNEUROSCI.1742-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burgos JE. The operant/respondent distinction: a computational neural-network analysis. In: Schmajuk N, editor. Computational models of conditioning. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  24. Burns R, Burgos JE, Donahoe JW. Pavlovian conditioning: pigeon nictitating membrane. Behav Process. 2011;86:102–8. https://doi.org/10.1016/j.beproc.2010.10.004.

    Article  Google Scholar 

  25. Burgos JE. Evolving artificial neural networks in Pavlovian environments. In: Donahoe JW, Dorsel-Packard V, editors. Neural-network models of cognition: biobehavioral foundations. Amsterdam: Elsevier; 1997. https://doi.org/10.1016/S0166-4115(97)80090-8.

    Chapter  Google Scholar 

  26. Burgos JE, Donahoe JW. Structure and function in selectionism: implications for complex behavior. In: Leslie J, Blackman D, editors. Issues in experimental and applied analyses of human behavior. Reno: Context Press; 2000.

    Google Scholar 

  27. Burgos JE, Flores C, García O, Díaz C, Cruz Y. A simultaneous procedure facilitates acquisition under an optimal interstimulus interval in artificial neural networks and rats. Behav Process. 2008;78(2):302–9. https://doi.org/10.1016/j.beproc.2008.02.018.

    Article  Google Scholar 

  28. Donahoe JW, Burgos JE. Behavior analysis and revaluation. J Exp Anal Behav. 2000;74(3):331–46. https://doi.org/10.1901/jeab.2000.74-331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burgos JE. Theoretical note: simulating latent inhibition with selection neural networks. Behav Process. 2003;62(1–3):183–92. https://doi.org/10.1016/S0376-6357(03)00025-1.

    Article  Google Scholar 

  30. Burgos JE. Theoretical note: the C/T ratio in artificial neural networks. Behav Process. 2005;69(2):249–56. https://doi.org/10.1016/j.beproc.2005.02.008.

    Article  Google Scholar 

  31. Burgos JE. Autoshaping and automaintenance: a neural-network approach. J Exp Anal Behav. 2007;88(1):115–30. https://doi.org/10.1901/jeab.2007.75-04.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sánchez JM, Galeazzi JM, Burgos JE. Some structural determinants of Pavlovian conditioning in artificial neural networks. Behav Process. 2010;84(1):526–35. https://doi.org/10.1016/j.beproc.2010.01.018.

    Article  Google Scholar 

  33. Burgos JE, Murillo-Rodríguez E. Neural-network simulations of two context-dependence phenomena. Behav Process. 2007;75(2):242–9. https://doi.org/10.1016/j.beproc.2007.02.003.

    Article  Google Scholar 

  34. Burgos JE, García-Leal Ó. Autoshaped choice in artificial neural networks: implications for behavioral economics and neuroeconomics. Behav Process. 2015;114:63–71. https://doi.org/10.1016/j.beproc.2015.01.010.

    Article  Google Scholar 

  35. Burgos JE. Misbehavior in artificial neural networks. Int J Comp Psychol. 2015;28:1–21. Available from: http://escholarship.org/uc/item/3vb500tv.

    Google Scholar 

  36. Ji J, Maren S. Electrolytic lesions of the dorsal hippocampus disrupt renewal of conditional fear after extinction. Learn Mem. 2005;12(3):270–6. https://doi.org/10.1101/lm.91705.

    Article  PubMed  PubMed Central  Google Scholar 

  37. McEchron MD, Tseng W, Disterhoft JF. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. J Neurosci. 2003;23(4):1535–47. https://doi.org/10.1523/JNEUROSCI.23-04-01535.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moyer JR, Power JM, Thompson LT, Disterhoft JF. Increased excitability of aged rabbit CA1 neurons after trace eyeblink conditioning. J Neurosci. 2000;20(14):5476–82. https://doi.org/10.1523/JNEUROSCI.20-14-05476.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frey U, Schroeder H, Matthies H. Dopaminergic antagonists prevent long-term maintenance of posttetanic LTP in the CA1 region of rat hippocampal slices. Brain Res. 1990;522(1):69–75. https://doi.org/10.1016/0006-8993(90)91578-5.

    Article  CAS  PubMed  Google Scholar 

  40. Gasbarri A, Packard MG, Campana E, Pacitti C. Anterograde and retrograde tracing of projections from the ventral tegmental area to the hippocampal formation in the rat. Brain Res Bull. 1994;33(4):445–52. https://doi.org/10.1016/0361-9230(94)90288-7.

    Article  CAS  PubMed  Google Scholar 

  41. Li S, Cullen WK, Anwyl R, Rowan MJ. Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci. 2003;6(5):526–31. https://doi.org/10.1038/nn1049.

    Article  CAS  PubMed  Google Scholar 

  42. Morris RGM, Moser EI, Riedel G, Martin SJ, Sandin J, Day M, O’Carroll C. Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos Trans R Soc Lond Ser B Biol Sci. 2003;358(1432):773–86. https://doi.org/10.1098/rstb.2002.1264.

    Article  CAS  Google Scholar 

  43. Scatton B, Simon H, Le Moal M, Bischoff S. Origin of dopaminergic innervation of the rat hippocampal formation. Neurosci Lett. 1980;18(2):125–31. https://doi.org/10.1016/0304-3940(80)90314-6.

    Article  CAS  PubMed  Google Scholar 

  44. Verney C, Baulac M, Berger B, Alverez C, Vigny A, Helle KB. Morphological evidence for a dopaminergic terminal field in the hippocampal formation of young and adult rat. Neuroscience. 1985;14(4):1039–52. https://doi.org/10.1016/0306-4522(85)90275-1.

    Article  CAS  PubMed  Google Scholar 

  45. Stein L, Belluzzi JD. Cellular investigations of behavioral reinforcement. Neurosci Biobehav Rev. 13(2–3):69–80. https://doi.org/10.1016/S0149-7634(89)80014-4.

  46. Amaral DG, Insausti R, Cowan WM. Evidence for a direct projection from the superior temporal gyrus to the entorhinal cortex in the monkey. Brain Res. 1983;275(2):263–77. https://doi.org/10.1016/0006-8993(83)90987-3.

    Article  CAS  PubMed  Google Scholar 

  47. Burwel RD, Amaral DG. Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol. 398(2):179–205. https://doi.org/10.1002/(SICI)1096-9861(19980824)398:2%3C179::AID-CNE3%3E3.0.CO;2-Y.

  48. Mohedano-Moriano A, Martínez-Marcos A, Pro-Sistiaga P, Blaizot X, Arroyo-Jimenez MM, Marcos P, Artacho-Pérula E, Insausti R. Convergence of unimodal and polymodal sensory input to the entorhinal cortex in the fascicularis monkey. Neuroscience. 2008;151(1):255–71. https://doi.org/10.1016/j.neuroscience.2007.09.074.

    Article  CAS  PubMed  Google Scholar 

  49. Van Hoesen GW, Hyman BT. Hippocampal formation: anatomy and the patterns of pathology in Alzheimer’s disease. Prog Brain Res. 1990;83:445–57. https://doi.org/10.1016/S0079-6123(08)61268-6.

    Article  PubMed  Google Scholar 

  50. Swanson LW, Köhler C. Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat. J Neurosci. 6(10):3010–23. http://www.jneurosci.org/content/6/10/3010.long.

  51. Barbas H, Blatt GJ. Topographically specific hippocampal projections target functionally distinct prefrontal areas in the Rhesus monkey. Hippocampus. 1995;5(6):511–33. https://doi.org/10.1002/hipo.450050604.

    Article  CAS  PubMed  Google Scholar 

  52. Lisman JE, Grace AA. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron. 2005;46(5):703–13. https://doi.org/10.1016/j.neuron.2005.05.002.

    Article  CAS  PubMed  Google Scholar 

  53. Witnauer JE, Miller RR. Conditioned suppression is an inverted-U function of footshock intensity. Learn Behav. 2013;41(1):94–106.

    Article  Google Scholar 

  54. Marlin NA. Contextual associations in trace conditioning. Anim Learn Behav. 1981;9(4):519–23. https://doi.org/10.3758/BF03209784.

    Article  Google Scholar 

  55. G-y W, Yao J, Hu B, H-m Z, Li Y-d, Li X, Li Q, J-f S. Reevaluating the role of the hippocampus in delay eyeblink conditioning. PLoS One. 2013;8:e71249. https://doi.org/10.1371/journal.pone.0071249.

    Article  CAS  Google Scholar 

  56. Grossberg S. A neural model of attention, reinforcement, and discrimination learning. Int Rev Neurobiol. 1975;18:263–327. https://doi.org/10.1016/S0074-7742(08)60037-9.

    Article  CAS  PubMed  Google Scholar 

  57. Schmajuk NA, DiCarlo JJ. Stimulus configuration, classical conditioning, and hippocampal function. Psychol Rev. 1992;99(2):268–305. https://doi.org/10.1037/0033-295X.99.2.268.

    Article  CAS  PubMed  Google Scholar 

  58. Chang RC, Blaisdell AP, Miller RR. Backward conditioning: mediation by the context. J Exp Psychol Anim Behav Process. 2003;29(3):171–83. https://doi.org/10.1037/0097-7403.29.3.171.

    Article  PubMed  Google Scholar 

  59. Chang RC, Stout S, Miller RR. Comparing excitatory backward and forward conditioning. Q J Exp Psychol. 2004;57B(1):1–23. https://doi.org/10.1080/02724990344000015.

    Article  Google Scholar 

  60. Heth CD, Rescorla RA. Simultaneous and backward fear conditioning in the rat. J Comp Physiol Psychol. 1973;82(3):434–43.

    Article  Google Scholar 

  61. Spetch ML, Wilkie DM, Pinel JPJ. Backward conditioning: a reevaluation of the empirical evidence. Psychol Bull. 1981;89(1):163–75.

    Article  CAS  Google Scholar 

  62. Kaye H, Pearce JM. Hippocampal lesions attenuate latent inhibition of a CS and a neutral stimulus. Psychobiology. 1987;15(1):293–9.

    Google Scholar 

  63. Coutureau E, Galani R, Gosselin O, Majchrzak M, Di Scala G. Entorhinal but not hippocampal or subicular lesions disrupt latent inhibition in rats. Neurobiol Learn Mem. 1999;72(3):143–57. https://doi.org/10.1006/nlme.1998.3895.

    Article  CAS  PubMed  Google Scholar 

  64. Solomon PR. Role of the hippocampus in blocking and conditioned inhibition of the rabbit’s nictitating membrane response. J Comp Physiol Psychol. 1977;91(2):407–17. https://doi.org/10.1037/h0077330.

    Article  CAS  PubMed  Google Scholar 

  65. Garrud P, Rawlins NP, Mackintosh NJ, Goodal G, Cotton MM, Feldon J. Successful overshadowing and blocking in hippocampectomized rats. Behav Brain Res. 1984;12(1):39–53. https://doi.org/10.1016/0166-4328(84)90201-8.

    Article  CAS  PubMed  Google Scholar 

  66. Good M, Macphail EM. Hippocampal lesions in pigeons (Columba livia) disrupt preexposure but not overshadowing or blocking. Quart J Exp Psychol. 1994;47B(3):263–91. https://journals.sagepub.com/doi/abs/10.1080/14640749408401360.

  67. Holland PC, Fox GD. Effects of hippocampal lesions on overshadowing and blocking procedures. Behav Neurosci. 2003;117(3):650–6. https://doi.org/10.1037/0735-7044.117.3.650.

    Article  PubMed  Google Scholar 

  68. Rickert EJ, Bent TL, Lane P, French J. Hippocampectomy and the attenuation of blocking. Behav Biol. 1978;22(2):147–60. https://doi.org/10.1016/S0091-6773(78)92170-3.

    Article  CAS  PubMed  Google Scholar 

  69. Schmajuk NA, Spear NE, Isaacson RL. Absence of overshadowing in rats with hippocampal lesions. Physiol Psychol. 1983;11(1):59–62. https://doi.org/10.3758/BF03326770.

    Article  Google Scholar 

  70. Treviño M. Associative learning through acquired salience. Front Behav Neurosci. 2016;11(9):353. https://doi.org/10.3389/fnbeh.2015.00353.

    Article  Google Scholar 

  71. Treviño M, Oviedo T, Jendritza P, Li S-B, Köhr G, De Marco RJ. Controlled variations in stimulus similarity during learning determine visual discrimination capacity in freely moving mice. Sci Rep. 2013;3:1048. https://doi.org/10.1038/srep01048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gerstner W, Sprekeler H, Deco G. Theory and simulation in neuroscience. Science. 2012;338(6103):60–5. https://doi.org/10.1126/science.1227356.

    Article  CAS  PubMed  Google Scholar 

Download references

Ethical Approval

No animals were used or participated in this article, excepting the authors, who were not mistreated in anyway; nor does it cite any studies with animals performed by any of the authors. Whether or not the networks used were mistreated requires an expanded code of ethics that includes the possibility and nature of suffering in artificial systems. Unfortunately, no so such code is yet available, and the issue of whether silicon computer quantum states are capable of suffering remains controversial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Burgos .

Editor information

Editors and Affiliations

Appendix

Appendix

Activation Rule

The model’s two main equations are the activation rule and the learning rule. The activation rule is used to compute the momentary level of activation of a neural processing unit j at moment t. The learning rule is used to compute the change in the weight of a connection from afferent (pre-connection, presynaptic) unit i to target (post-connection, postsynaptic) unit j. The activation rule is defined as follows:

$$ {a}_{j,t}=\left\{\begin{array}{l}{a}_{S^{\ast },t},\kern0.5em \mathrm{if}\kern0.5em {a}_{S^{\ast },t}>0\kern0.5em \mathrm{and}\kern0.75em j\kern0.5em \mathrm{is}\kern0.5em {V}_D\kern0.5em \mathrm{or}\kern0.5em {R}^{\ast}\kern0.5em \left(\mathrm{unconditional}\ \mathrm{activation}\right);\kern0.5em \mathrm{otherwise},\\ {}L\left({exc}_{j,t}\right)+{\uptau}_jL\left({exc}_{j,t-1}\right)\left[1-L\left({exc}_{j,t}\right)\right]-L\left({inh}_{j,t}\right),\\ {}\kern1em \mathrm{if}\kern0.5em L\left({exc}_{j,t}\right)>L\left({inh}_{j,t}\right)\ \mathrm{and}\ L\left({exc}_{j,t}\right)\ge {\uptheta}_t\left(\mathrm{reactivation}\right)\\ {}{a}_{j,t-1}-{\upkappa}_j\ {a}_{j,t-1}\left(1-{a}_{j,t-1}\right)-L\left({inh}_{j,t}\right),\\ {}\kern1em \mathrm{if}\kern0.5em L\left({exc}_{j,t}\right)>L\left({inj}_{j,t}\right)\ \mathrm{and}\ L\left({exc}_{j,t}\right)<{\uptheta}_{j,t}\left(\mathrm{decay}\right)\\ {}0,\kern0.5em \mathrm{if}\kern0.5em L\left({exc}_{j,t}\right)\le L\left({inh}_{j,t}\right)\ \left(\mathrm{deactivation}\right)\end{array}\right. $$
(23.1)

where j is a neural processing (hidden, output, H, or VD) unit, t is a moment in time, and

$$ L(x)=\frac{1}{1+{e}^{\frac{-x+\mu }{\sigma }}} $$

is the logistic function with constant mean μ = 0.5 and standard deviation σ = 0.1 (a spontaneous activation free parameter). In this function

$$ x=\sum \limits_{i=1}^m{a_{i,t}}^{+}{w_{i,j,t}}^{+} $$

for excj,t, and

$$ x=\sum \limits_{i=1}^n{a_{i,t}}^{-}{w_{i,j,t}}^{-} $$

for inhj,t, where m denotes the total number of excitatory units connected to j and n the total number of inhibitory units connected to j. No inhibitory units were used in this study, so the amount of inhibition was 0.0 for all units and networks in all simulations. Whether the rule is in reactivation or decay mode at t depends on a Gaussian threshold (θj,t), a random number generated according to a Gaussian distribution with a mean of 0.2 and standard deviation of 0.15. θj,t is dynamical, as it is generated at every moment for every computational unit. The other two activation free parameters are temporal summation (τj = 0.1) and decay (κ j = 0.1). The same free parameters that were used here have been used in most previous simulation research with the model.

On input activations and stimulus traces. A network’s inputs in this model are not activated via the activation rule but manually, by just setting their activations according to some training protocol that simulates a conditioning procedure of interest. The protocol includes simulations of sensory stimuli typically used as cues in conditioning studies (e.g., lights, tones, noises, etc.) and biologically significant stimuli typically used as USs or primary reinforcers (e.g., food, water, electrical shocks, etc.). In previous research with this model, we have assumed that these activations are real-time primary sensory effects of external stimuli. Hence, we do not intend input activations in this model to simulate “traces” qua input activations in the absence of external stimuli but real-time effects of ongoing stimuli. Thus, a greater-than-zero input activation means in this model that a stimulus is effectively present, roughly at that moment.

Thus far in research with this model, we have had no need to conceive input activations as “stimulus traces.” The notion of a stimulus trace in models of Pavlovian conditioning was introduced ad hoc to account for trace conditioning in a way that fits the conventional wisdom that the CS always acquires some associative strength, even if absent. In Simulation 1, however, we simulated trace conditioning (and in Simulation 2, backward conditioning) as only context conditioning. We know this to be extreme and against conventional wisdom, but it is consistent with the evidence (see Marlin, 1981).

Learning Rule

The learning rule is defined as follows:

$$ \Delta {w}_{i,j,t}=\left\{\begin{array}{l}{\upalpha}_j{a}_{j,t}{d}_t{p}_{i,t}{r}_{j,t},\mathrm{if}\ {d}_t\ge 0.001\\ {}-{\upbeta}_j{w}_{i,j,t-1}{a}_{i,t}{a}_{j,t},\mathrm{otherwise}\end{array}\right. $$
(23.2)

where α (rate of weight increment) and β (the rate of weight decrement) denote the two free parameters of the rule (α = 0.5 and β = 0.1 for all connections; the same parameters have been used in most previous simulation research with this model). Ideally, the relative values of various parameters would reflect independent, experimentally determined values. All initial weights were set to 0.1 (cf. Burgos 2007).

The other terms of the learning rule are:

  • ai,t: activation of afferent unit (i), either excitatory or inhibitory

  • aj,t: activation of target unit (j)

  • dt = dH,t = |aH,t − aH,t−1| + dD,t(1 − dH,t−1), if j is an S″ or H unit (see Fig. 23.1 for the different kinds of units and how they are connected)

  • dt = dD,t = aD,taD,t−1, if j is an M″, D, or M′ unit; if dD,t < 0.0, then dD,t = 0.0

    $$ {p}_{i,t}=\frac{a_{i,t}{w}_{i,j,t-1}}{N},\kern1em \mathrm{where}\kern0.5em N={exc}_{j,t}\kern0.5em \mathrm{or}\kern0.5em N={inh}_{j,t} $$
  • depending on whether i is excitatory or inhibitory, respectively

$$ {r}_{j,t}=1-\sum \limits_{i=1}^n{w}_{i,j,t}. $$

The key factor is dt, a signal that modulates changes of all weights in the same moment (i.e., it is a diffuse signal), inspired by evidence on the roles of hippocampal (e.g., CA1, simulated by H units in the H architecture at the top of Fig. 23.1) and dopaminergic (e.g., ventral tegmental area, simulated by the D unit in Fig. 23.1) areas in conditioning. dt also is a discrepancy signal in that it is defined as a temporal difference between the actual activations of H and D units in successive pairs of moments. The learning rule includes two such modulating signals: dH,t, which depends on the activations of the H units, and dD,t, which depends on the activations of the D units. As shown above, dH,t is amplified by dD,t. However, in the ~H networks (bottom panel, Fig. 23.1), dH,t = 0.0, for which dt = dD,t. Hence, dt in the ~H networks tends to be weaker than in the H networks.

The pi,t and rj,t factors introduce a “rich get richer” sort of competition among connections for a limited amount of weight (1.0) on a common target unit. In the network architectures used in the simulations (see Fig. 23.1), this competition took place on units that received two connections (viz., all the S″ and M″ units, as well as the D unit). The pi,t factor, like some other models, includes a Hebbian component where connection weights partly depend on the co-activations of the connected (afferent and target) units.

In general, connections tend to gain weight (to a greater or lesser degree, depending on several factors) when S* (see Fig. 23.1) is activated and lose weight when S* is not activated. Successive timesteps with a zero S* activation thus promote weight loss. The same learning rule was used to modify the connection weights across all times, connections, networks, units, and training protocols.

All activations and weights are updated at every moment t according to an asynchronous random procedure. In this procedure, a randomly ordered list of all units (or connections) is generated at t, and new activations (or weights) are computed in that order (according to Eq. 23.1 for activations or Eq. 23.2 for weights). The activations (or weights) from t − 1 are immediately replaced by the new activations at t. Hence, by chance, the activation of a unit at t could depend on the activations of its afferents (some or all) at t − 1. Therefore, the propagation of activations across the network, from input to hidden to output layers , is not strictly sequential and synchronous.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burgos, J.E., Galeazzi, J.M. (2021). Neural Network Simulations of a Possible Role of the Hippocampus in Pavlovian Conditioning. In: Gargiulo, P.Á., Mesones Arroyo, H.L. (eds) Psychiatry and Neuroscience Update. Springer, Cham. https://doi.org/10.1007/978-3-030-61721-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61721-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61720-2

  • Online ISBN: 978-3-030-61721-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics