Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12477))

Included in the following conference series:

Abstract

Different logics are used to specify the structure, life cycle and interaction of dynamically forming ensembles. Specified aspects include the construction and finalization of an ensemble, joining and leaving of collaborators, acceptable and forbidden behaviors of the ensemble, local and global goals and boundaries, and the permission to access resources. As ensembles are dynamically formed from heterogeneous agents, it is reasonable to assume an evolving information asymmetry between its collaborators. Epistemic logic explicitly considers the concepts of knowledge, as held and developed by the different agents in a scope. In this paper, we explore the idea of applying epistemic logic in the specification of different aspects of an ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bieber, P.: A logic of communication in hostile environment. In: [1990] Proceedings, The Computer Security Foundations Workshop III, pp. 14–22 (1990)

    Google Scholar 

  2. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

    Book  MATH  Google Scholar 

  3. van Ditmarsch, H., van Eijck, J., Sietsma, F., Wang, Y.: On the logic of lying. In: van Eijck, J., Verbrugge, R. (eds.) Games, Actions and Social Software. LNCS, vol. 7010, pp. 41–72. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29326-9_4

    Chapter  Google Scholar 

  4. van Ditmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B.P.: An introduction to logics of knowledge and belief. CoRR abs/1503.00806 (2015). http://arxiv.org/abs/1503.00806

  5. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. SYLI, vol. 337, 1st edn. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5839-4

    Book  MATH  Google Scholar 

  6. Fagin, R., Moses, Y., Halpern, J.Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (2003)

    MATH  Google Scholar 

  7. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989). https://doi.org/10.1137/0218012

    Article  MathSciNet  MATH  Google Scholar 

  8. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19

    Chapter  Google Scholar 

  9. Hennicker, R., Wirsing, M.: Dynamic logic for ensembles. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 32–47. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5_3

    Chapter  Google Scholar 

  10. Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge, London (1996)

    Google Scholar 

  11. Reisig, W.: Understanding Petri Nets. Modeling Techniques, Analysis Methods, Case Studies. Translated from the German by the author (07 2013). https://doi.org/10.1007/978-3-642-33278-4

  12. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

    Google Scholar 

  13. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: engineering autonomic service-component ensembles. In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35887-6_1

    Chapter  Google Scholar 

  14. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16310-9

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Sürmeli .

Editor information

Editors and Affiliations

6 Appendix

6 Appendix

1.1 6.1 Kripke Structures

An epistemic Kripke structure \(\mathbf {W}= (W, Sat ,({\equiv _\alpha })_{\alpha \in \mathcal {A}})\) over atomic propositions \(\mathcal {P}\) and agents \(A\) is a vertex- and edge-labeled, directed graph, where

  • each vertex \(w\in W\) is called a world,

  • \( Sat : \mathcal {P}\rightarrow 2^W\) is the valuation function, mapping atomic proposition \(p\in \mathcal {P}\) to the set \( Sat (p)\) of worlds in which p is true, and

  • each \({\equiv _\alpha }\subseteq W\times W\) is a reflexive, symmetric relations specifying that if in world w, \(\alpha \) also considers \(w'\) as the current world iff \(w\equiv _\alpha w'\).

For an agent \(\alpha \) and a world \(w\in W\), we define the set \( Ind _{\mathbf {W}}(w,\alpha ) := \{w'\mid w'\in W, w\equiv _\alpha w'\}\) of worlds indistinguishable from w by \(\alpha \) in \(\mathbf {W}\), observing \(w\in Ind _{\mathbf {W}}(w,\alpha )\).

1.2 6.2 Semantics of \(\mathbb {L}\)

The semantics of a formula are defined by the set of worlds in which the formula holds, formalized as the function \( Worlds _{}(\mathbf {W},\cdot ) : \mathbb {L}\rightarrow 2^W\) where for each \(\phi ,\psi \in \mathbb {L}\):

  1. 1.

    \( Worlds _{}(\mathbf {W},p) = Sat (p)\) for all \(p\in \mathcal {P}\).

  2. 2.

    \( Worlds _{}(\mathbf {W},\lnot \phi ) = W\setminus Worlds _{}(\mathbf {W},\phi )\).

  3. 3.

    \( Worlds _{}(\mathbf {W},\phi \vee \psi ) = Worlds _{}(\mathbf {W},\phi )\cup Worlds _{}(\mathbf {W},\psi )\).

  4. 4.

    \( Worlds _{}(\mathbf {W},\mathop {\mathsf {K}_{\alpha }} \phi ) = \{w\in W \mid Ind _{\mathbf {W}}(w,\alpha )\subseteq Worlds _{}(\mathbf {W},\phi ) \}\).

  5. 5.

    \( Worlds _{}(\mathbf {W},\mathop {\mathsf {K}_{A}} \phi ) = \bigcap _{\alpha \in A} Worlds _{}(\mathbf {W},\mathop {\mathsf {K}_{\alpha }} \phi )\).

  6. 6.

    \( Worlds _{}(\mathbf {W},\mathop {\mathsf {CK}_{A}}\phi ) = Worlds _{}(\mathbf {W},\phi )\cap Worlds _{}(\mathbf {W},\mathop {\mathsf {K}_{A}} \phi )\cap Worlds _{}(\mathbf {W},\mathop {\mathsf {K}_{A}} \mathop {\mathsf {K}_{A}} \phi )\dots \).

From \(w\in Ind _{\mathbf {W}}(w,\alpha )\), we get \( Worlds _{}(\mathbf {W},\mathop {\mathsf {K}_{\alpha }} \phi )\subseteq Worlds _{}(\mathbf {W},\phi )\). Hence, \(\mathop {\mathsf {K}_{\alpha }} \phi \Rightarrow \phi \) is a tautology: \(\alpha \) knows that the formula \(\phi \) is a fact, that is, \(\phi \) is true, and \(\alpha \) knows that \(\phi \) is true.

1.3 6.3 Semantics of \(\mathbb {L}_e\)

The semantics of a formula \(\phi \in \mathbb {L}_e\) are defined by the set of worlds in which the formula holds, formalized as the function \( Worlds _{e}(\mathbf {W},\cdot ) : \mathbb {L}_e\rightarrow 2^W\) where for each \(\phi ,\psi \in \mathbb {L}\):

  1. 1.

    \( Worlds _{e}(\mathbf {W},p) = Sat (p)\) for all \(p\in \mathcal {P}\).

  2. 2.

    \( Worlds _{e}(\mathbf {W},\lnot \phi ) = W\setminus Worlds _{e}(\mathbf {W},\phi )\).

  3. 3.

    \( Worlds _{e}(\mathbf {W},\phi \vee \psi ) = Worlds _{e}(\mathbf {W},\phi )\cup Worlds _{e}(\mathbf {W},\psi )\).

  4. 4.

    \( Worlds _{e}(\mathbf {W},\mathop {\mathsf {K}_{\alpha }} \phi ) = \{w\in W \mid Ind _{\mathbf {W}}(w,\alpha )\subseteq Worlds _{e}(\mathbf {W},\phi )\}\).

  5. 5.

    \( Worlds _{e}(\mathbf {W},\mathop {\mathsf {K}_{A}} \phi ) = \bigcap _{\alpha \in A} Worlds _{e}(\mathbf {W},\mathop {\mathsf {K}_{\alpha }} \phi )\).

  6. 6.

    \( Worlds _{e}(\mathbf {W},\mathop {\mathsf {CK}_{A}}\phi ) = Worlds _{e}(\mathbf {W},\phi )\cap Worlds _{e}(\mathbf {W},\mathop {\mathsf {K}_{A}} \phi )\cap Worlds _{e}(\mathbf {W},\mathop {\mathsf {K}_{A}} \mathop {\mathsf {K}_{A}} \phi )\dots \).

  7. 7.

    \( Worlds _{e}(\mathbf {W},\mathop {\mathsf {K}_{e}} \phi ) = \bigcap _{\alpha \in \mathcal {A}} Worlds _{e}(\mathbf {W},\phi _\alpha )\) where \(\phi _\alpha = member _{e}(\alpha )\Rightarrow \mathop {\mathsf {K}_{\alpha }} \phi \).

  8. 8.

    \( Worlds _{e}(\mathbf {W},\mathop {\mathsf {CK}_{A}}\phi ) = Worlds _{e}(\mathbf {W},\phi )\cap Worlds _{e}(\mathbf {W},\mathop {\mathsf {K}_{e}} \phi )\cap Worlds _{e}(\mathbf {W},\mathop {\mathsf {K}_{e}} \mathop {\mathsf {K}_{e}} \phi )\dots \).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sürmeli, J. (2020). Epistemic Logic in Ensemble Specification. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Engineering Principles. ISoLA 2020. Lecture Notes in Computer Science(), vol 12477. Springer, Cham. https://doi.org/10.1007/978-3-030-61470-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61470-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61469-0

  • Online ISBN: 978-3-030-61470-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics