Skip to main content

A Survey on Freezing of Gait Detection and Prediction in Parkinson’s Disease

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12468))

Included in the following conference series:

Abstract

Most of Parkinson’s disease (PD) patients present a set of motor and non-motor symptoms and behaviors that vary during the day and from day-to-day. In particular, freezing of gait (FOG) impairs their quality of life and increases the risk of falling. Smart technology like mobile communication and wearable sensors can be used for detection and prediction of FOG, increasing the understanding of the complex PD. There are surveys reviewing works on Parkinson and/or technologies used to manage this disease. In this review, we summarize and analyze works addressing FOG detection and prediction based on wearable sensors, vision and other devices. We aim to identify trends, challenges and opportunities in the development of FOG detection and prediction systems.

This research has been funded by Universidad Panamericana through the grant “Fomento a la Investigación UP 2020”, under project code UP-CI-2020-MEX-11-ING.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlrichs, C., et al.: Detecting freezing of gait with a tri-axial accelerometer in Parkinson’s disease patients. Med. Biol. Eng. Comput. 54(1), 223–233 (2016)

    Article  Google Scholar 

  2. Assam, R., Seidl, T.: Prediction of freezing of gait from parkinson’s disease movement time series using conditional random fields. In: Proceedings of the Third ACM SIGSPATIAL International Workshop on the Use of GIS in Public Health, pp. 11–20 (2014)

    Google Scholar 

  3. Azevedo Coste, C., Sijobert, B., Pissard-Gibollet, R., Pasquier, M., Espiau, B., Geny, C.: Detection of freezing of gait in parkinson disease: preliminary results. Sensors 14(4), 6819–6827 (2014)

    Article  Google Scholar 

  4. Bachlin, M., et al.: Potentials of enhanced context awareness in wearable assistants for parkinson’s disease patients with the freezing of gait syndrome. In: 2009 International Symposium on Wearable Computers, pp. 123–130. IEEE (2009)

    Google Scholar 

  5. Bloem, B.R., Hausdorff, J.M., Visser, J.E., Giladi, N.: Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Move. Disord.: Off. J. Move. Disord. Soc. 19(8), 871–884 (2004)

    Article  Google Scholar 

  6. Camps, J., et al.: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit. Knowl.-Based Syst. 139, 119–131 (2018)

    Article  Google Scholar 

  7. Cole, B.T., Roy, S.H., Nawab, S.H.: Detecting freezing-of-gait during unscripted and unconstrained activity. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5649–5652. IEEE (2011)

    Google Scholar 

  8. Delval, A., et al.: Objective detection of subtle freezing of gait episodes in Parkinson’s disease. Mov. Disord. 25(11), 1684–1693 (2010)

    Article  Google Scholar 

  9. Djurić-Jovičić, M.D., Jovičić, N.S., Radovanović, S.M., Stanković, I.D., Popović, M.B., Kostić, V.S.: Automatic identification and classification of freezing of gait episodes in Parkinson’s disease patients. IEEE Trans. Neural Syst. Rehabil. Eng. 22(3), 685–694 (2013)

    Article  Google Scholar 

  10. Espay, A.J., et al.: Technology in Parkinson’s disease: challenges and opportunities. Mov. Disord. 31(9), 1272–1282 (2016)

    Article  Google Scholar 

  11. Forsaa, E., Larsen, J., Wentzel-Larsen, T., Alves, G.: A 12-year population-based study of freezing of gait in Parkinson’s disease. Parkinsonism Relat. Disord. 21(3), 254–258 (2015)

    Article  Google Scholar 

  12. Ghai, S., Ghai, I., Schmitz, G., Effenberg, A.O.: Effect of rhythmic auditory cueing on parkinsonian gait: a systematic review and meta-analysis. Sci. Rep. 8(1), 1–19 (2018)

    Article  Google Scholar 

  13. Han, J.H., Lee, W.J., Ahn, T.B., Jeon, B.S., Park, K.S.: Gait analysis for freezing detection in patients with movement disorder using three dimensional acceleration system. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), vol. 2, pp. 1863–1865. IEEE (2003)

    Google Scholar 

  14. Handojoseno, A.A., Shine, J.M., Nguyen, T.N., Tran, Y., Lewis, S.J., Nguyen, H.T.: The detection of freezing of gait in Parkinson’s disease patients using EEG signals based on wavelet decomposition. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 69–72. IEEE (2012)

    Google Scholar 

  15. Handojoseno, A.A., Shine, J.M., Nguyen, T.N., Tran, Y., Lewis, S.J., Nguyen, H.T.: Analysis and prediction of the freezing of gait using eeg brain dynamics. IEEE Trans. Neural Syst. Rehabil. Eng. 23(5), 887–896 (2014)

    Article  Google Scholar 

  16. Hu, K., et al.: Vision-based freezing of gait detection with anatomic directed graph representation. IEEE J. Biomed. Health Inf. 24(4), 1215–1225 (2019)

    Article  Google Scholar 

  17. Kim, H.B., et al.: Validation of freezing-of-gait monitoring using smartphone. Telemed. e-Health 24(11), 899–907 (2018)

    Article  Google Scholar 

  18. Latt, M.D., Lord, S.R., Morris, J.G., Fung, V.S.: Clinical and physiological assessments for elucidating falls risk in Parkinson’s disease. Movem. Disord.: Off. J. Move. Disord. Soc. 24(9), 1280–1289 (2009)

    Article  Google Scholar 

  19. Macht, M., et al.: Predictors of freezing in Parkinson’s disease: a survey of 6,620 patients. Mov. Disord. 22(7), 953–956 (2007)

    Article  Google Scholar 

  20. Masiala, S., Huijbers, W., Atzmueller, M.: Feature-set-engineering for detecting freezing of gait in parkinson’s disease using deep recurrent neural networks. arXiv preprint arXiv:1909.03428 (2019)

  21. Mazilu, S., Calatroni, A., Gazit, E., Mirelman, A., Hausdorff, J.M., Tröster, G.: Prediction of freezing of gait in Parkinson’s from physiological wearables: an exploratory study. IEEE J. Biomed. Health Inf. 19(6), 1843–1854 (2015)

    Article  Google Scholar 

  22. Mazilu, S., et al.: Online detection of freezing of gait with smartphones and machine learning techniques. In: 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, pp. 123–130. IEEE (2012)

    Google Scholar 

  23. Moore, S.T., MacDougall, H.G., Ondo, W.G.: Ambulatory monitoring of freezing of gait in Parkinson’s disease. J. Neurosci. Methods 167(2), 340–348 (2008)

    Article  Google Scholar 

  24. Nutt, J.G., Bloem, B.R., Giladi, N., Hallett, M., Horak, F.B., Nieuwboer, A.: Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 10(8), 734–744 (2011)

    Article  Google Scholar 

  25. Palmerini, L., Rocchi, L., Mazilu, S., Gazit, E., Hausdorff, J.M., Chiari, L.: Identification of characteristic motor patterns preceding freezing of gait in Parkinson’s disease using wearable sensors. Front. Neurol. 8, 394 (2017)

    Article  Google Scholar 

  26. Pardoel, S., Kofman, J., Nantel, J., Lemaire, E.D.: Wearable-sensor-based detection and prediction of freezing of gait in Parkinson’s disease: a review. Sensors 19(23), 5141 (2019)

    Article  Google Scholar 

  27. Paul, S.S., Canning, C.G., Sherrington, C., Lord, S.R., Close, J.C., Fung, V.S.: Three simple clinical tests to accurately predict falls in people with Parkinson’s disease. Mov. Disord. 28(5), 655–662 (2013)

    Article  Google Scholar 

  28. Pepa, L., Ciabattoni, L., Verdini, F., Capecci, M., Ceravolo, M.: Smartphone based fuzzy logic freezing of gait detection in Parkinson’s disease. In: 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), pp. 1–6. IEEE (2014)

    Google Scholar 

  29. Pereira, C.R., Pereira, D.R., Weber, S.A., Hook, C., de Albuquerque, V.H.C., Papa, J.P.: A survey on computer-assisted parkinson’s disease diagnosis. Artif. Intell. Med. 95, 48–63 (2019)

    Article  Google Scholar 

  30. Pham, T.T., et al.: Freezing of gait detection in Parkinson’s disease: a subject-independent detector using anomaly scores. IEEE Trans. Biomed. Eng. 64(11), 2719–2728 (2017)

    Article  Google Scholar 

  31. Rodríguez-Martín, D., et al.: Home detection of freezing of gait using support vector machines through a single waist-worn triaxial accelerometer. PloS One 12(2), e0171764 (2017)

    Article  Google Scholar 

  32. Schaafsma, J., Balash, Y., Gurevich, T., Bartels, A., Hausdorff, J.M., Giladi, N.: Characterization of freezing of gait subtypes and the response of each to levodopa in parkinson’s disease. Eur. J. Neurol. 10(4), 391–398 (2003)

    Article  Google Scholar 

  33. Sigcha, L., Costa, N., Pavón, I., Costa, S., Arezes, P., López, J.M., De Arcas, G.: Deep learning approaches for detecting freezing of gait in Parkinson’s disease patients through on-body acceleration sensors. Sensors 20(7), 1895 (2020)

    Article  Google Scholar 

  34. Sun, R., Wang, Z., Martens, K.E., Lewis, S.: Convolutional 3D attention network for video based freezing of gait recognition. In: 2018 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–7. IEEE (2018)

    Google Scholar 

  35. Sweeney, D., Quinlan, L.R., Browne, P., Richardson, M., Meskell, P., ÓLaighin, G., et al.: A technological review of wearable cueing devices addressing freezing of gait in Parkinson’s disease. Sensors 19(6), 1277 (2019)

    Article  Google Scholar 

  36. Tahir, A., et al.: WiFreeze: multiresolution scalograms for freezing of gait detection in Parkinson’s leveraging 5G spectrum with deep learning. Electronics 8(12), 1433 (2019)

    Article  Google Scholar 

  37. Torvi, V.G., Bhattacharya, A., Chakraborty, S.: Deep domain adaptation to predict freezing of gait in patients with Parkinson’s disease. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1001–1006. IEEE (2018)

    Google Scholar 

  38. Weiss, D., et al.: Freezing of gait: understanding the complexity of an enigmatic phenomenon. Brain 143(1), 14–30 (2020)

    Article  Google Scholar 

  39. Xia, Y., Zhang, J., Ye, Q., Cheng, N., Lu, Y., Zhang, D.: Evaluation of deep convolutional neural networks for detection of freezing of gait in Parkinson’s disease patients. Biomed. Signal Process. Control 46, 221–230 (2018)

    Article  Google Scholar 

  40. Zach, H., et al.: Identifying freezing of gait in parkinson’s disease during freezing provoking tasks using waist-mounted accelerometry. Parkinsonism Relat. Disord. 21(11), 1362–1366 (2015)

    Article  MathSciNet  Google Scholar 

  41. Zia, J., Tadayon, A., McDaniel, T., Panchanathan, S.: Utilizing neural networks to predict freezing of gait in Parkinson’s patients. In: Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 333–334 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Martínez-Villaseñor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martínez-Villaseñor, L., Ponce, H., Miralles-Pechuán, L. (2020). A Survey on Freezing of Gait Detection and Prediction in Parkinson’s Disease. In: Martínez-Villaseñor, L., Herrera-Alcántara, O., Ponce, H., Castro-Espinoza, F.A. (eds) Advances in Soft Computing. MICAI 2020. Lecture Notes in Computer Science(), vol 12468. Springer, Cham. https://doi.org/10.1007/978-3-030-60884-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60884-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60883-5

  • Online ISBN: 978-3-030-60884-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics