Skip to main content

Inverse Distance Aggregation for Federated Learning with Non-IID Data

  • Conference paper
  • First Online:
Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning (DART 2020, DCL 2020)

Abstract

Federated learning (FL) has been a promising approach in the field of medical imaging in recent years. A critical problem in FL, specifically in medical scenarios is to have a more accurate shared model which is robust to noisy and out-of distribution clients. In this work, we tackle the problem of statistical heterogeneity in data for FL which is highly plausible in medical data where for example the data comes from different sites with different scanner settings. We propose IDA (Inverse Distance Aggregation), a novel adaptive weighting approach for clients based on meta-information which handles unbalanced and non-iid data. We extensively analyze and evaluate our method against the well-known FL approach, Federated Averaging as a baseline.

Project page: https://ida-fl.github.io/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beel, J.: Federated meta-learning: Democratizing algorithm selection across disciplines and software libraries. Science (AICS) 210, 219 (2018)

    Google Scholar 

  2. Chen, F., Dong, Z., Li, Z., He, X.: Federated meta-learning for recommendation. arXiv preprint arXiv:1802.07876 (2018)

  3. Chen, Y., Sun, X., Jin, Y.: Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation. IEEE Trans. Neural Netw. Learn. Syst. (2019)

    Google Scholar 

  4. Corinzia, L., Buhmann, J.M.: Variational federated multi-task learning. arXiv preprint arXiv:1906.06268 (2019)

  5. Hsieh, K., Phanishayee, A., Mutlu, O., Gibbons, P.B.: The Non-IID data quagmire of decentralized machine learning. arXiv preprint arXiv:1910.00189 (2019)

  6. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  7. Huang, L., et al.: Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. J. Biomed. Inform. 99, 103291 (2019)

    Article  Google Scholar 

  8. Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.L.: Communication-efficient on-device machine learning: Federated distillation and augmentation under Non-IID private data. arXiv preprint arXiv:1811.11479 (2018)

  9. Jiang, Y., Konečnỳ, J., Rush, K., Kannan, S.: Improving federated learning personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488 (2019)

  10. Kairouz, P., et al.: Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)

  11. Kaissis, G.A., Makowski, M.R., Rückert, D., Braren, R.F.: Secure, privacy-preserving and federated machine learning in medical imaging. Nature Mach. Intell., 1–7 (2020)

    Google Scholar 

  12. Konečnỳ, J., McMahan, B., Ramage, D.: Federated optimization: distributed optimization beyond the datacenter. arXiv preprint arXiv:1511.03575 (2015)

  13. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  14. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  15. Li, D., Wang, J.: FedMD: heterogenous federated learning via model distillation. arXiv preprint arXiv:1910.03581 (2019)

  16. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. arXiv preprint arXiv:1908.07873 (2019)

  17. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018)

  18. Li, W., et al.: Privacy-preserving federated brain tumour segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_16

    Chapter  Google Scholar 

  19. Li, X., Gu, Y., Dvornek, N., Staib, L., Ventola, P., Duncan, J.S.: Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: abide results. arXiv preprint arXiv:2001.05647 (2020)

  20. Liang, P.P., Liu, T., Ziyin, L., Salakhutdinov, R., Morency, L.P.: Think locally, act globally: federated learning with local and global representations. arXiv preprint arXiv:2001.01523 (2020)

  21. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al.: Communication-efficient learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629 (2016)

  22. Pillutla, K., Kakade, S.M., Harchaoui, Z.: Robust aggregation for federated learning. arXiv preprint (2019)

    Google Scholar 

  23. Rieke, N., et al.: The future of digital health with federated learning. arXiv preprint arXiv:2003.08119 (2020)

  24. Sattler, F., Müller, K.R., Samek, W.: Clustered federated learning: model-agnostic distributed multi-task optimization under privacy constraints. arXiv preprint arXiv:1910.01991 (2019)

  25. Sattler, F., Wiedemann, S., Müller, K.R., Samek, W.: Robust and communication-efficient federated learning from Non-IID data. IEEE Trans. Neural Netw. Learn. Syst. (2019)

    Google Scholar 

  26. Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  27. Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_9

    Chapter  Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  29. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.S.: Federated multi-task learning. In: Advances in Neural Information Processing Systems, pp. 4424–4434 (2017)

    Google Scholar 

  30. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 (2018)

    Article  Google Scholar 

  31. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  32. Xu, J., Wang, F.: Federated learning for healthcare informatics. arXiv preprint arXiv:1911.06270 (2019)

  33. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with Non-IID data. arXiv preprint arXiv:1806.00582 (2018)

Download references

Acknowledgements

S.A. is supported by the PRIME programme of the German Academic Exchange Service (DAAD) with funds from the German Federal Ministry of Education and Research (BMBF). A.F. is supported by Munich Center for Machine Learning (MCML) with funding from the German Federal Ministry of Education and Research (BMBF) under Grant No. 01IS18036B. We also gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Yeganeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yeganeh, Y., Farshad, A., Navab, N., Albarqouni, S. (2020). Inverse Distance Aggregation for Federated Learning with Non-IID Data. In: Albarqouni, S., et al. Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning. DART DCL 2020 2020. Lecture Notes in Computer Science(), vol 12444. Springer, Cham. https://doi.org/10.1007/978-3-030-60548-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60548-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60547-6

  • Online ISBN: 978-3-030-60548-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics