Skip to main content

Modeling Pathfinding for Swarm Robotics

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2020)

Abstract

This paper presents a theoretical model for path planning in multi-robot navigation in swarm robotics. The plans for the paths are optimized using two objective functions, namely to maximize the safety distance between the agents and to minimize the mean time to complete a plan. The plans are designed for various vehicle models. The presented path planning model allows us to evaluate both decentralized and centralized planners. In this paper, we focus on decentralized planners and aim to find a set of Pareto-optimal plans, which enables us to investigate the fitness landscape of the problem. For solving the multi-objective problem, we design a modified version of NSGA-II algorithm with adapted operators to find sets of Pareto-optimal paths for several agents using various vehicle models and environments. Our experiments show that small problem instances can be solved well, while solving larger problems is not always possible due to the large complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A different technique to bound the search space is to plan only for a fixed time-frame, however, this means a new, problem-specific parameter needs to be introduced.

  2. 2.

    Start- and goal configuration are fixed and never affected by the crossover operation.

  3. 3.

    We did exactly 31 runs, so the median fitness (and commonly used quantiles) correspond to a specific run.

  4. 4.

    More vehicle models and source code: http://www.ci.ovgu.de/Research/Codes.html.

References

  1. Atzmon, D., Stern, R., Felner, A., Wagner, G., Barták, R., Zhou, N.F.: Robust multi-agent path finding and executing. J. Artif. Intell. Res. 67, 549–579 (2020). https://doi.org/10.1613/jair.1.11734

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayindir, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321 (2016). https://doi.org/10.1016/j.neucom.2015.05.116

    Article  Google Scholar 

  3. Čáp, M., Novák, P., Vokřínek, J., Pěchouček, M.: Multi-agent RRT*: sampling-based cooperative pathfinding. In: 12th International Conference on Autonomous Agents and Multiagent Systems 2013, AAMAS 2013 2, pp. 1263–1264 (2013)

    Google Scholar 

  4. De Rainville, F.M., Fortin, F.A., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: a python framework for evolutionary algorithms. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2012, New York, pp. 85–92. ACM (2012). https://doi.org/10.1145/2330784.2330799

  5. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  7. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)

    Article  MathSciNet  Google Scholar 

  8. Felner, A., et al.: Search-based optimal solvers for the multi-agent pathfinding problem: summary and challenges. In: Tenth Annual Symposium on Combinatorial Search (SoCS), pp. 29–37 (2017). https://www.aaai.org/ocs/index.php/SOCS/SOCS17/paper/view/15781

  9. Krontiris, A., Sajid, Q., Bekris, K.E.: Towards using discrete multiagent pathfinding to address continuous problems. In: AAAI Workshop - Technical Report WS-12-10, pp. 26–31 (2012)

    Google Scholar 

  10. LaValle, S.M.: Planning algorithms (2006). https://doi.org/10.1017/CBO9780511546877

  11. Metoui, F., Boussaid, B., Abdelkrim, M.N.: Path planning for a multi-robot system with decentralized control architecture. Stud. Syst. Decis. Control 270, 229–259 (2020). https://doi.org/10.1007/978-981-15-1819-5_12

  12. Oliveira, G.M.B., et al.: A cellular automata-based path-planning for a cooperative and decentralized team of robots. In: IEEE congress on Evolutionary Computation (CEC), pp. 739–746. IEEE (2019). https://doi.org/10.1109/cec.2019.8790205

  13. Rossi, F., Bandyopadhyay, S., Wolf, M., Pavone, M.: Review of multi-agent algorithms for collective behavior: a structural taxonomy. IFAC-PapersOnLine 51(12), 112–117 (2018). https://doi.org/10.1016/j.ifacol.2018.07.097

  14. Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors and current applications. Front. Robot. AI 7 (2020). https://doi.org/10.3389/frobt.2020.00036

  15. Silva, L., Nedjah, N.: Efficient strategy for collective navigation control in swarm robotics. Procedia Comput. Sci. 80, 814–823 (2016). https://doi.org/10.1016/j.procs.2016.05.371

    Article  Google Scholar 

  16. Stern, R., et al.: Multi-agent pathfinding: definitions, variants, and benchmarks. ArXiv Preprint, June 2019. https://arxiv.org/abs/1906.08291

  17. Street, C., Lacerda, B., Mühlig, M., Hawes, N.: Multi-robot planning under uncertainty with congestion-aware models. In: Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems, p. 9 (2020)

    Google Scholar 

  18. Surynek, P., Felner, A., Stern, R., Boyarski, E.: An empirical comparison of the hardness of multi-agent path finding under the makespan and the sum of costs objectives. In: Proceedings of the 9th Annual Symposium on Combinatorial Search, SoCS 2016 (SoCS), pp. 145–146, January 2016

    Google Scholar 

  19. Wang, H., Rubenstein, M.: Walk, stop, count, and swap: decentralized multi-agent path finding with theoretical guarantees. IEEE Robot. Autom. Lett. 5(2), 1119–1126 (2020). https://doi.org/10.1109/LRA.2020.2967317

    Article  Google Scholar 

  20. Weise, J., Mai, S., Zille, H., Mostaghim, S.: On the scalable multi-objective multi-agent pathfinding problem. In: Accepted at Congress on Evolutionary Computing CEC 2020 (2020)

    Google Scholar 

  21. Zafar, M.N., Mohanta, J.C.: Methodology for path planning and optimization of mobile robots: a review. Procedia Comput. Sci. 133, 141–152 (2018). https://doi.org/10.1016/j.procs.2018.07.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Mai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mai, S., Mostaghim, S. (2020). Modeling Pathfinding for Swarm Robotics. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2020. Lecture Notes in Computer Science(), vol 12421. Springer, Cham. https://doi.org/10.1007/978-3-030-60376-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60376-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60375-5

  • Online ISBN: 978-3-030-60376-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics