Skip to main content

Phase Reconstruction with Iterated Hilbert Transforms

  • Chapter
  • First Online:
Physics of Biological Oscillators

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We discuss theoretical and practical issues of data-driven phase reconstruction approaches for nonlinear oscillatory systems by means of the geometric technique of embeddings and protophase-to-phase transformation. In this chapter, we introduce a natural extension of the well-studied Hilbert transform by iteration. The novel approach, termed iterated Hilbert transform embeddings, implements central assumptions underlying phase reconstruction and allows for exact demodulation of purely phase modulated signals. Here, we examine the performance of the novel method for the more challenging situation of generic phase-amplitude modulated signals of a simple nonlinear oscillatory system. In particular we present the benefits of the approach for secondary phase analysis steps illustrated by reconstruction of the phase response curve. Limitations of the approach are disussed for a noise-driven phase dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Bahraminasab, F. Ghasemi, A. Stefanovska, P.V.E. McClintock, H. Kantz, Direction of coupling from phases of interacting oscillators: a permutation information approach. Phys. Rev. Lett. 100, 084101 (2008)

    Article  ADS  Google Scholar 

  2. H. Balzter, N.J. Tate, J. Kaduk, D. Harper, S. Page, R. Morrison, M. Muskulus, P. Jones, Multi-scale entropy analysis as a method for time-series analysis of climate data. Climate 3(1), 227–240 (2015)

    Article  Google Scholar 

  3. D. Benitez, P. Gaydecki, A. Zaidi, A. Fitzpatrick, The use of the Hilbert transform in ECG signal analysis. Comput. Biol. Med. 31(5), 399–406 (2001)

    Article  Google Scholar 

  4. K.A. Blaha, A. Pikovsky, M. Rosenblum, M.T. Clark, C.G. Rusin, J.L. Hudson, Reconstruction of two-dimensional phase dynamics from experiments on coupled oscillators. Phys. Rev. E 84(4), 046201 (2011)

    Article  ADS  Google Scholar 

  5. E. Brown, J. Moehlis, P. Holmes, On the phase reduction and response dynamics of neural oscillator populations. Neural Comput. 16(4), 673–715 (2004)

    Article  MATH  Google Scholar 

  6. S.L. Brunton, J.N. Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control (Cambridge University Press, 2019)

    Google Scholar 

  7. R. Cestnik, M. Rosenblum, Reconstructing networks of pulse-coupled oscillators from spike trains. Phys. Rev. E 96(1), 012209 (2017)

    Article  ADS  Google Scholar 

  8. R. Chestnik, M. Rosenblum, Inferring the phase response curve from observation of a continuously perturbed oscillator. Sci. Rep. 8(1), 13606 (2018)

    Article  ADS  Google Scholar 

  9. L. Cimponeriu, M. Rosenblum, A. Pikovsky, Estimation of delay in coupling from time series. Phys. Rev. E 70, 046213 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. L. Cohen, P. Loughlin, D. Vakman, On an ambiguity in the definition of the amplitude and phase of a signal. Sig. Process. 79(3), 301–307 (1999)

    Article  MATH  Google Scholar 

  11. M. Feldman, Hilbert Transform Applications in Mechanical Vibration (Wiley, 2011)

    Google Scholar 

  12. E. Gengel, A. Pikovsky, Phase demodulation with iterative Hilbert transform embeddings. Sig. Process. 165, 115–127 (2019)

    Article  Google Scholar 

  13. R. Guevara Erra, J.L. Perez Velazquez, M. Rosenblum, Neural synchronization from the perspective of non-linear dynamics. Front. Comput. Neurosci. 11, 98 (2017)

    Article  Google Scholar 

  14. N.-H. Holstein-Rathlou, K.-P. Yip, O.V. Sosnovtseva, E. Mosekilde, Synchronization phenomena in nephron–nephron interaction. Chaos: Interdiscip. J. Nonlinear Sci. 11(2), 417–426 (2001)

    Google Scholar 

  15. N. Jajcay, S. Kravtsov, G. Sugihara, A.A. Tsonis, M. Paluš, Synchronization and causality across time scales in El Niño Southern Oscillation. NPJ Clim. Atmos. Sci. 1(1), 1–8 (2018)

    Google Scholar 

  16. H. Kim, R. Eykholt, J. Salas, Nonlinear dynamics, delay times, and embedding windows. Phys. D 127(1–2), 48–60 (1999)

    Article  MATH  Google Scholar 

  17. B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, R. Mrowka, Uncovering interaction of coupled oscillators from data. Phys. Rev. E 76(5 Pt 2), 055201 (2007)

    Article  ADS  Google Scholar 

  18. B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, R. Mrowka, Phase dynamics of coupled oscillators reconstructed from data. Phys. Rev. E 77(6), 066205 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. B. Kralemann, M. Frühwirth, A. Pikovsky, M. Rosenblum, T. Kenner, J. Schaefer, M. Moser, In vivo cardiac phase response curve elucidates human respiratory heart rate variability. Nat. Commun. 4, 2418 (2013)

    Article  ADS  Google Scholar 

  20. B. Kralemann, A. Pikovsky, M. Rosenblum, Reconstructing phase dynamics of oscillator networks. Chaos 21(2), 025104 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. C. Letellier, J. Maquet, L. Le Sceller, G. Gouesbet, L. Aguirre, On the non-equivalence of observables in phase-space reconstructions from recorded time series. J. Phys. A: Math. Gen. 31(39), 7913 (1998)

    Article  ADS  MATH  Google Scholar 

  22. D. Li, X. Li, Z. Liang, L.J. Voss, J.W. Sleigh, Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia. J. Neural Eng. 7(4), 046010 (2010)

    Article  ADS  Google Scholar 

  23. M. Paluš, Multiscale atmospheric dynamics: cross-frequency phase-amplitude coupling in the air temperature. Phys. Rev. Lett. 112(7), 078702 (2014)

    Article  ADS  Google Scholar 

  24. M. Paluš, A. Stefanovska, Direction of coupling from phases of interacting oscillators: An information-theoretic approach. Phys. Rev. E 67, 055201 (2003)

    Google Scholar 

  25. Z. Peng, W.T. Peter, F. Chu, An improved Hilbert-Huang transform and its application in vibration signal analysis. J. Sound Vib. 286(1–2), 187–205 (2005)

    Article  ADS  Google Scholar 

  26. B. Pietras, A. Daffertshofer, Network dynamics of coupled oscillators and phase reduction techniques. Phys. Rep. (2019)

    Google Scholar 

  27. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001)

    Google Scholar 

  28. T. Rings, K. Lehnertz, Distinguishing between direct and indirect directional couplings in large oscillator networks: partial or non-partial phase analyses? Chaos: Interdiscip. J. Nonlinear Sci. 26(9), 093106 (2016)

    Google Scholar 

  29. M. Rosenblum, L. Cimponeriu, A. Pikovsky, Coupled oscillators approach in analysis of physiological data. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 441–4 (2006)

    Article  MATH  Google Scholar 

  30. M. Rosenblum, A. Pikovsky, Detecting direction of coupling in interacting oscillators. Phys. Rev. E 64(4), 045202(R) (2001)

    Article  ADS  Google Scholar 

  31. M. Rosenblum, A. Pikovsky, Synchronization: from pendulum clocks to chaotic lasers and chemical oscillators. Contemp. Phys. 44(5), 401–416 (2003)

    Article  ADS  Google Scholar 

  32. T. Sauer, J.A. Yorke, M. Casdagli, Embedology. J. Stat. Phys. 65(3–4), 579–616 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. A. Savitzky, M.J. Golay, Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)

    Article  ADS  Google Scholar 

  34. A. Schlemmer, S. Berg, T. Lilienkamp, S. Luther, U. Parlitz, Spatiotemporal permutation entropy as a measure for complexity of cardiac arrhythmia. Front. Phys. 6, 39 (2018)

    Article  Google Scholar 

  35. T. Stankovski, T. Pereira, P.V.E. McClintock, A. Stefanovska, Coupling functions: universal insights into dynamical interaction mechanisms. Rev. Mod. Phys. 89, 045001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  36. T. Stankovski, S. Petkoski, J. Raeder, A.F. Smith, P.V. McClintock, A. Stefanovska, Alterations in the coupling functions between cortical and cardio-respiratory oscillations due to anaesthesia with propofol and sevoflurane. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 374(2067), 20150186 (2016)

    Article  ADS  Google Scholar 

  37. Ç. Topçu, M. Frühwirth, M. Moser, M. Rosenblum, A. Pikovsky, Disentangling respiratory sinus arrhythmia in heart rate variability records. Physiol. Meas. 39(5), 054002 (2018)

    Article  Google Scholar 

  38. A.B. Tort, R. Komorowski, H. Eichenbaum, N. Kopell, Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol. 104(2), 1195–1210 (2010)

    Article  Google Scholar 

  39. A.T. Winfree, The Geometry of Biological Time, vol. 12 (Springer Science & Business Media, 2001)

    Google Scholar 

  40. Y. Xu, D. Yan, The Bedrosian identity for the Hilbert transform of product functions. Proc. Am. Math. Soc. 134(9), 2719–2728 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. E. Yeung, S. Kundu, N. Hodas,Learning deep neural network representations for Koopman operators of nonlinear dynamical systems, in 2019 American Control Conference (ACC) (IEEE, 2019), pp. 4832–4839

    Google Scholar 

  42. H. Yu, F. Li, T. Wu, R. Li, L. Yao, C. Wang, X. Wu, Functional brain abnormalities in major depressive disorder using the Hilbert-Huang transform. Brain Imaging Behav. 12(6), 1556–1568 (2018)

    Article  Google Scholar 

  43. D.A. Zappalà, M. Barreiro, C. Masoller, Uncovering temporal regularity in atmospheric dynamics through Hilbert phase analysis. Chaos: Interdiscip. J. Nonlinear Sci. 29(5), 051101 (2019)

    Google Scholar 

Download references

Acknowledgements

Both authors thank Aneta Stefanovska and Peter McClintock for the kind invitation to contribute to this interdisciplinary work. Erik Gengel thanks the Friedrich-Ebert-Stiftung for financial support. This paper was supported by the RSF grant 17-12-01534. The analysis in Sec. 3.3 was supported by the Laboratory of Dynamical Systems and Applications NRU HSE, of the Russian Ministry of Science and Higher Education (Grant No. 075-15-2019-1931).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkady Pikovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gengel, E., Pikovsky, A. (2021). Phase Reconstruction with Iterated Hilbert Transforms. In: Stefanovska, A., McClintock, P.V.E. (eds) Physics of Biological Oscillators. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-59805-1_12

Download citation

Publish with us

Policies and ethics