Skip to main content

Vehicle Routing Problem with Reverse Cross-Docking: An Adaptive Large Neighborhood Search Algorithm

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12433))

Included in the following conference series:

Abstract

Cross-docking is a logistics strategy that aims at less transportation costs and fast customer deliveries. Incorporating an efficient vehicle routing could increase the benefits of the cross-docking. In this paper, the vehicle routing problem with reverse cross-docking (VRP-RCD) is studied. Reverse logistics has attracted more attention due to its ability to gain more profit and maintain the competitiveness of a company. VRP-RCD includes a four-level supply chain network: suppliers, cross-dock, customers, and outlets, with the objective of minimizing vehicle operational and transportation costs. A two-phase heuristic that employs an adaptive large neighborhood search (ALNS) with various destroy and repair operators is proposed to solve benchmark instances. The simulated annealing framework is embedded to discover a vast search space during the search process. Experimental results show that our proposed ALNS obtains optimal solutions for 24 out of 30 problems of the first set of benchmark instances while getting better results for all instances in the second set of benchmark instances compared to optimization software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Brito, M.P., Dekker, R.: A framework for reverse logistics. In: Dekker, R., Fleischmann, M., Inderfurth, K., Van Wassenhove, L.N. (eds.) Reverse Logistics, pp. 3–27. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24803-3_1

    Chapter  Google Scholar 

  2. Demir, E., Bektaş, T., Laporte, G.: An adaptive large neighborhood search heuristic for the pollution-routing problem. Eur. J. Oper. Res. 223(2), 346–359 (2012)

    Article  MathSciNet  Google Scholar 

  3. Grangier, P., Gendreau, M., Lehuédé, F., Rousseau, L.M.: A matheuristic based on large neighborhood search for the vehicle routing problem with cross-docking. Comput. Oper. Res. 84, 116–126 (2017)

    Article  MathSciNet  Google Scholar 

  4. Gunawan, A., Widjaja, A.T., Vansteenwegen, P., Yu, V.F.: Adaptive large neighborhood search for vehicle routing problem with cross-docking. In: Proceedings of the IEEE World Congress on Computational Intelligence (WCCI) (2020, accepted for publication)

    Google Scholar 

  5. Gunawan, A., Widjaja, A.T., Vansteenwegen, P., Yu, V.F.: A matheuristic algorithm for solving the vehicle routing problem with cross-docking. In: Kotsireas, I.S., Pardalos, P.M. (eds.) LION 2020. LNCS, vol. 12096, pp. 9–15. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53552-0_2

    Chapter  Google Scholar 

  6. Hasani-Goodarzi, A., Tavakkoli-Moghaddam, R.: Capacitated vehicle routing problem for multi-product cross-docking with split deliveries and pickups. Proc. - Soc. Behav. Sci. 62, 1360–1365 (2011)

    Article  Google Scholar 

  7. Hemmelmayr, V.C., Cordeau, J.F., Crainic, T.G.: An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Comput. Oper. Res. 39(12), 3215–3228 (2012)

    Article  MathSciNet  Google Scholar 

  8. Jayaraman, V., Luo, Y.: Creating competitive advantages through new value creation: a reverse logistics perspective. Acad. Manag. Perspect. 21(2), 56–73 (2007)

    Article  Google Scholar 

  9. Kaboudani, Y., Ghodsypour, S.H., Kia, H., Shahmardan, A.: Vehicle routing and scheduling in cross docks with forward and reverse logistics. Oper. Res. Int. J 20, 1589–1622 (2018). https://doi.org/10.1007/s12351-018-0396-z

    Article  Google Scholar 

  10. Lambert, S., Riopel, D., Abdul-Kader, W.: A reverse logistics decisions conceptual framework. Comput. Ind. Eng. 61(3), 561–581 (2011)

    Article  Google Scholar 

  11. Lee, Y.H., Jung, J.W., Lee, K.M.: Vehicle routing scheduling for cross-docking in the supply chain. Comput. Ind. Eng. 51(2), 247–256 (2006)

    Article  Google Scholar 

  12. Liao, C.J., Lin, Y., Shih, S.C.: Vehicle routing with cross-docking in the supply chain. Expert Syst. Appl. 37(10), 6868–6873 (2010)

    Article  Google Scholar 

  13. Lutz, R.: Adaptive large neighborhood search. Bachelor thesis, Universität Ulm (2015)

    Google Scholar 

  14. Nikolopoulou, A.I., Repoussis, P.P., Tarantilis, C.D., Zachariadis, E.E.: Moving products between location pairs: cross-docking versus direct-shipping. Eur. J. Oper. Res. 256(3), 803–819 (2017)

    Article  MathSciNet  Google Scholar 

  15. Rezaei, S., Kheirkhah, A.: Applying forward and reverse cross-docking in a multi-product integrated supply chain network. Prod. Eng. 11(4–5), 495–509 (2017). https://doi.org/10.1007/s11740-017-0743-6

    Article  Google Scholar 

  16. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

    Article  Google Scholar 

  17. Sacramento, D., Pisinger, D., Ropke, S.: An adaptive large neighborhood search metaheuristic for the vehicle routing problem with drones. Transp. Res. Part C: Emerg. Technol. 102, 289–315 (2019)

    Article  Google Scholar 

  18. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_30

    Chapter  Google Scholar 

  19. Wen, M., Larsen, J., Clausen, J., Cordeau, J.F., Laporte, G.: Vehicle routing with cross-docking. J. Oper. Res. Soc. 60(12), 1708–1718 (2009). https://doi.org/10.1057/jors.2008.108

    Article  MATH  Google Scholar 

  20. Widjaja, A.T., Gunawan, A., Jodiawan, P., Yu, V.F.: Incorporating a reverse logistics scheme in a vehicle routing problem with cross-docking network: a modelling approach. In: 2020 7th International Conference on Industrial Engineering and Applications, pp. 854–858. IEEE (2020)

    Google Scholar 

  21. Yu, V.F., Jewpanya, P., Redi, A.P.: Open vehicle routing problem with cross-docking. Comput. Ind. Eng. 94, 6–17 (2016)

    Article  Google Scholar 

  22. Zuluaga, J.P.S., Thiell, M., Perales, R.C.: Reverse cross-docking. Omega 66, 48–57 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This research is supported by the Singapore Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 1 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldy Gunawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gunawan, A., Widjaja, A.T., Vansteenwegen, P., Yu, V.F. (2020). Vehicle Routing Problem with Reverse Cross-Docking: An Adaptive Large Neighborhood Search Algorithm. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds) Computational Logistics. ICCL 2020. Lecture Notes in Computer Science(), vol 12433. Springer, Cham. https://doi.org/10.1007/978-3-030-59747-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59747-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59746-7

  • Online ISBN: 978-3-030-59747-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics