Skip to main content

Deep Representation Learning for Multimodal Brain Networks

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12267))

Abstract

Applying network science approaches to investigate the functions and anatomy of the human brain is prevalent in modern medical imaging analysis. Due to the complex network topology, for an individual brain, mining a discriminative network representation from the multimodal brain networks is non-trivial. The recent success of deep learning techniques on graph-structured data suggests a new way to model the non-linear cross-modality relationship. However, current deep brain network methods either ignore the intrinsic graph topology or require a network basis shared within a group. To address these challenges, we propose a novel end-to-end deep graph representation learning (Deep Multimodal Brain Networks - DMBN) to fuse multimodal brain networks. Specifically, we decipher the cross-modality relationship through a graph encoding and decoding process. The higher-order network mappings from brain structural networks to functional networks are learned in the node domain. The learned network representation is a set of node features that are informative to induce brain saliency maps in a supervised manner. We test our framework in both synthetic and real image data. The experimental results show the superiority of the proposed method over some other state-of-the-art deep brain network models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arslan, S., Ktena, S.I., Glocker, B., Rueckert, D.: Graph saliency maps through spectral convolutional networks: application to sex classification with brain connectivity. arXiv preprint arXiv:1806.01764 (2018)

  2. Avena-Koenigsberger, A., Misic, B., Sporns, O.: Communication dynamics in complex brain networks. Nature Rev. Neurosci. 19(1), 17–33 (2018)

    Article  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  Google Scholar 

  4. Bullmore, E., Sporns, O.: The economy of brain network organization. Nat. Rev. Neurosci. 13(5), 336 (2012)

    Article  Google Scholar 

  5. Camicioli, R., Moore, M.M., Kinney, A., Corbridge, E., Glassberg, K., Kaye, J.A.: Parkinson’s disease is associated with hippocampal atrophy. Mov. Disord. 18(7), 784–790 (2003)

    Article  Google Scholar 

  6. Cao, B., et al.: t-BNE: tensor-based brain network embedding. In: Proceedings of SIAM International Conference on Data Mining (SDM) (2017)

    Google Scholar 

  7. Deshpande, G., Wang, P., Rangaprakash, D., Wilamowski, B.: Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data. IEEE Trans. Cybern. 45, 2668–2679 (2015)

    Article  Google Scholar 

  8. Dyrba, M., Grothe, M., Kirste, T., Teipel, S.J.: Multimodal analysis of functional and structural disconnection in a Lzheimer’s disease using multiple kernel svm. Hum. Brain Mapp. 36(6), 2118–2131 (2015)

    Article  Google Scholar 

  9. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS (2017)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Honey, C., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. 106(6), 2035–2040 (2009)

    Article  Google Scholar 

  12. Jao, T., et al.: Functional brain network changes associated with clinical and biochemical measures of the severity of he patic encephalopathy. Neuroimage 122, 332–344 (2015)

    Article  Google Scholar 

  13. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: Fsl. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  14. Kawahara, J., et al.: Brainnetcnn: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146, 1038–1049 (2017)

    Article  Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  16. Ktena, S.I., et al.: Metric learning with spectral graph convolutions on brain connectivity networks. NeuroImage 169, 431–442 (2018)

    Article  Google Scholar 

  17. Li, G., Muller, M., Thabet, A., Ghanem, B.: DeepGCNs: Can GCNs go as deep as CNNs? In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9267–9276 (2019)

    Google Scholar 

  18. Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner, C., Simuni, T., Coffey, C., Kieburtz, K., Flagg, E., Chowdhury, S., et al.: The parkinson progression marker initiative (PPMI). Prog. Neurobiol. 95(4), 629–635 (2011)

    Article  Google Scholar 

  19. Obeso, J.A., Rodriguez-Oroz, M.C., Rodriguez, M., Lanciego, J.L., Artieda, J., Gonzalo, N., Olanow, C.W.: Pathophysiology of the basal ganglia in parkinson’s disease. Trends Neurosci. 23, S8–S19 (2000)

    Article  Google Scholar 

  20. Osmanlıoğlu, Y., Tunç, B., Parker, D., Elliott, M.A., Baum, G.L., Ciric, R., Satterthwaite, T.D., Gur, R.E., Gur, R.C., Verma, R.: System-level matching of structural and functional connectomes in the human brain. NeuroImage 199, 93–104 (2019)

    Article  Google Scholar 

  21. Plis, S.M., et al.: Reading the (functional) writing on the (structural) wall: Multimodal fusion of brain structure and function via a deep neural network based translation approach reveals novel impairments in schizophrenia. NeuroImage 181, 734–747 (2018)

    Google Scholar 

  22. Repovs, G., Csernansky, J.G., Barch, D.M.: Brain network connectivity in individuals with schizophrenia and their siblings. Biological psychiatry (2011)

    Google Scholar 

  23. Rijpkema, M., Everaerd, D., van der Pol, C., Franke, B., Tendolkar, I., Fernández, G.: Normal sexual dimorphism in the human basal ganglia. Hum. Brain Mapping 33(5), 1246–1252 (2012)

    Article  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Ruigrok, A.N., et al.: A meta-analysis of sex differences in human brain structure. Neurosci. Biobehav. Rev. 39, 34–50 (2014)

    Article  Google Scholar 

  26. Schwarz, A.J., McGonigle, J.: Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data. Neuroimage 55(3), 1132–1146 (2011)

    Article  Google Scholar 

  27. Stam, C., et al.: The relation between structural and functional connectivity patterns in complex brain networks. Int. J. Psychophysiol. 103, 149–160 (2016)

    Article  Google Scholar 

  28. Sui, J., Pearlson, G., Caprihan, A., Adali, T., Kiehl, K.A., Liu, J., Yamamoto, J., Calhoun, V.D.: Discriminating schizophrenia and bipolar disorder by fusing FMRI and DTI in a multimodal CCA+ joint ICA model. Neuroimage 57(3), 839–855 (2011)

    Article  Google Scholar 

  29. Suk, H.-I., Shen, D.: Deep learning-based feature representation for AD/MCI classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 583–590. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_72

    Chapter  Google Scholar 

  30. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  31. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  32. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  33. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  34. Wang, S., He, L., Cao, B., Lu, C.T., Yu, P.S., Ragin, A.B.: Structural deep brain network mining. In: ACM SIGKDD. ACM (2017)

    Google Scholar 

  35. Whitfield-Gabrieli, S., Nieto-Castanon, A.: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity 2(3), 125–141 (2012)

    Article  Google Scholar 

  36. Zhang, W., Shu, K., Wang, S., Liu, H., Wang, Y.: Multimodal fusion of brain networks with longitudinal couplings. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_1

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH (RF1AG051710 and R01EB025032). We also gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalin Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5374 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W., Zhan, L., Thompson, P., Wang, Y. (2020). Deep Representation Learning for Multimodal Brain Networks. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics