Skip to main content

ImageCHD: A 3D Computed Tomography Image Dataset for Classification of Congenital Heart Disease

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Congenital heart disease (CHD) is the most common type of birth defects, which occurs 1 in every 110 births in the United States. CHD usually comes with severe variations in heart structure and great artery connections that can be classified into many types. Thus highly specialized domain knowledge and time-consuming human process is needed to analyze the associated medical images. On the other hand, due to the complexity of CHD and the lack of dataset, little has been explored on the automatic diagnosis (classification) of CHDs. In this paper, we present ImageCHD, the first medical image dataset for CHD classification. ImageCHD contains 110 3D Computed Tomography (CT) images covering most types of CHD, which is of decent size compared with existing medical imaging datasets. Classification of CHDs requires the identification of large structural changes without any local tissue changes, with limited data. It is an example of a larger class of problems that are quite difficult for current machine-learning based vision methods to solve. To demonstrate this, we further present a baseline framework for automatic classification of CHD, based on a state-of-the-art CHD segmentation method. Experimental results show that the baseline framework can only achieve a classification accuracy of 82.0% under selective prediction scheme with 88.4% coverage, leaving big room for further improvement. We hope that ImageCHD can stimulate further research and lead to innovative and generic solutions that would have an impact in multiple domains. Our dataset is released to the public [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://github.com/XiaoweiXu/ImageCHD-A-3D-Computed-Tomography-Image-Dataset-for-Classification-of-Congenital-Heart-Disease

  2. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  3. Bhat, V., BeLaVaL, V., Gadabanahalli, K., Raj, V., Shah, S.: Illustrated imaging essay on congenital heart diseases: multimodality approach Part I: clinical perspective, anatomy and imaging techniques. J. Clin. Diagn. Res. JCDR 10(5), TE01 (2016)

    Google Scholar 

  4. Dou, Q., et al.: PnP-AdaNet: plug-and-play adversarial domain adaptation network at unpaired cross-modality cardiac segmentation. IEEE Access 7, 99065–99076 (2019)

    Article  Google Scholar 

  5. Habijan, M., Leventić, H., Galić, I., Babin, D.: Whole heart segmentation from CT images using 3D U-net architecture. In: 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 121–126. IEEE (2019)

    Google Scholar 

  6. Liu, T., Tian, Y., Zhao, S., Huang, X., Wang, Q.: Automatic whole heart segmentation using a two-stage U-net framework and an adaptive threshold window. IEEE Access 7, 83628–83636 (2019)

    Article  Google Scholar 

  7. Pace, D.F., et al.: Iterative segmentation from limited training data: applications to congenital heart disease. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 334–342. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_38

    Chapter  Google Scholar 

  8. Payer, C., Štern, D., Bischof, H., Urschler, M.: Multi-label whole heart segmentation using CNNs and anatomical label configurations. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 190–198. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_20

    Chapter  Google Scholar 

  9. Piccini, D., Littmann, A., Nielles-Vallespin, S., Zenge, M.O.: Respiratory self-navigation for whole-heart bright-blood coronary MRI: methods for robust isolation and automatic segmentation of the blood pool. Magn. Reson. Med. 68(2), 571–579 (2012)

    Article  Google Scholar 

  10. Pidan, D., El-Yaniv, R.: Selective prediction of financial trends with hidden Markov models. In: Advances in Neural Information Processing Systems, pp. 855–863 (2011)

    Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40(2), 99–121 (2000)

    Article  Google Scholar 

  13. Wang, C., MacGillivray, T., Macnaught, G., Yang, G., Newby, D.: A two-stage 3D Unet framework for multi-class segmentation on full resolution image. arXiv preprint arXiv:1804.04341 (2018)

  14. Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Dilated convolutional neural networks for cardiovascular MR segmentation in congenital heart disease. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR-2016. LNCS, vol. 10129, pp. 95–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_9

    Chapter  Google Scholar 

  15. Xu, X., et al.: Quantization of fully convolutional networks for accurate biomedical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8300–8308 (2018)

    Google Scholar 

  16. Xu, X., et al.: Whole heart and great vessel segmentation in congenital heart disease using deep neural networks and graph matching. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 477–485. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_53

    Chapter  Google Scholar 

  17. Xu, Z., Wu, Z., Feng, J.: CFUN: combining faster R-CNN and U-net network for efficient whole heart segmentation. arXiv preprint arXiv:1812.04914 (2018)

  18. Yang, X., Bian, C., Yu, L., Ni, D., Heng, P.-A.: Class-balanced deep neural network for automatic ventricular structure segmentation. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 152–160. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_16

    Chapter  Google Scholar 

  19. Yang, X., Bian, C., Yu, L., Ni, D., Heng, P.-A.: Hybrid loss guided convolutional networks for whole heart parsing. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 215–223. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_23

    Chapter  Google Scholar 

  20. Ye, C., Wang, W., Zhang, S., Wang, K.: Multi-depth fusion network for whole-heart CT image segmentation. IEEE Access 7, 23421–23429 (2019)

    Article  Google Scholar 

  21. Yu, L., Yang, X., Qin, J., Heng, P.-A.: 3D FractalNet: dense volumetric segmentation for cardiovascular MRI volumes. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR-2016. LNCS, vol. 10129, pp. 103–110. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_10

    Chapter  Google Scholar 

  22. Zhang, R., Chung, A.C.S.: A fine-grain error map prediction and segmentation quality assessment framework for whole-heart segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 550–558. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_61

    Chapter  Google Scholar 

  23. Zheng, H., et al.: HFA-Net: 3D cardiovascular image segmentation with asymmetrical pooling and content-aware fusion. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 759–767. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_84

    Chapter  Google Scholar 

  24. Zhou, Z., et al.: Cross-modal attention-guided convolutional network for multi-modal cardiac segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 601–610. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_69

    Chapter  Google Scholar 

  25. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyu Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, X. et al. (2020). ImageCHD: A 3D Computed Tomography Image Dataset for Classification of Congenital Heart Disease. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59719-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59718-4

  • Online ISBN: 978-3-030-59719-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics