Skip to main content

Non-Rigid Volume to Surface Registration Using a Data-Driven Biomechanical Model

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Non-rigid registration is a key component in soft-tissue navigation. We focus on laparoscopic liver surgery, where we register the organ model obtained from a preoperative CT scan to the intraoperative partial organ surface, reconstructed from the laparoscopic video. This is a challenging task due to sparse and noisy intraoperative data, real-time requirements and many unknowns - such as tissue properties and boundary conditions. Furthermore, establishing correspondences between pre- and intraoperative data can be extremely difficult since the liver usually lacks distinct surface features and the used imaging modalities suffer from very different types of noise. In this work, we train a convolutional neural network to perform both the search for surface correspondences as well as the non-rigid registration in one step. The network is trained on physically accurate biomechanical simulations of randomly generated, deforming organ-like structures. This enables the network to immediately generalize to a new patient organ without the need to re-train. We add various amounts of noise to the intraoperative surfaces during training, making the network robust to noisy intraoperative data. During inference, the network outputs the displacement field which matches the preoperative volume to the partial intraoperative surface. In multiple experiments, we show that the network translates well to real data while maintaining a high inference speed. Our code is made available online.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gitlab.com/nct_tso_public/Volume2SurfaceCNN.

References

  1. Bilic, P., Christ, P.F., Vorontsov, E., Chlebus, G., Chen, H., Dou, Q., et al.: The liver tumor segmentation benchmark (LiTS). ArXiv abs/1901.04056 (2019)

    Google Scholar 

  2. Brunet, J.-N., Mendizabal, A., Petit, A., Golse, N., Vibert, E., Cotin, S.: Physics-based deep neural network for augmented reality during liver surgery. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 137–145. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_16

    Chapter  Google Scholar 

  3. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning. vol. 48 (2016)

    Google Scholar 

  4. Geuzaine, C., Remacle, J.F.: Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009)

    Article  MathSciNet  Google Scholar 

  5. Griffiths, D., Boehm, J.: A review on deep learning techniques for 3d sensed data classification. Remote Sensing 11(12), 1499 (2019)

    Article  Google Scholar 

  6. Heiselman, J., Clements, L., Collins, J., Weis, J., Simpson, A., Geevarghese, S.: Characterization and correction of intraoperative soft tissue deformation in image-guided laparoscopic liver surgery. J. Med. Imaging 5(2), 021203 (2017)

    Article  Google Scholar 

  7. Koo, B., Özgür, E., Le Roy, B., Buc, E., Bartoli, A.: Deformable registration of a preoperative 3d liver volume to a laparoscopy image using contour and shading cues. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 326–334. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_38

    Chapter  Google Scholar 

  8. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  9. Malinen, M., Råback, P.: Elmer Finite Element Solver for Multiphysics and Multiscale Problems. Multiscale Modelling Methods for Applications in Materials Science, Forschungszentrum Jülich (2013)

    Google Scholar 

  10. Mendizabal, A., Márquez-Neila, P., Cotin, S.: Simulation of hyperelastic materials in real-time using deep learning. Med. Image Anal. 59, 101569 (2019)

    Article  Google Scholar 

  11. Mendizabal, A., Tagliabue, E., Brunet, J.N., Dallálba, D., Fiorini, P., Cotin, S.: Physics-based deep neural network for real-time lesion tracking in ultrasound-guided breast biopsy. In: Computational Biomechanics for Medicine XIV. Shenzhen, China (2019)

    Google Scholar 

  12. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  13. Özgür, E., Koo, B., Le Roy, B., Buc, E., Bartoli, A.: Preoperative liver registration for augmented monocular laparoscopy using backward-forward biomechanical simulation. Int. J. Comput. Assist. Radiol. Surg. 13, 1629–1640 (2018)

    Article  Google Scholar 

  14. Pellicer-Valero, O.J., Rupérez, M.J., Martínez-Sanchis, S., Martín-Guerrero, J.D.: Real-time biomechanical modeling of the liver using machine learning models trained on finite element method simulations. Expert Syst. Appl. 143, 113083 (2020)

    Article  Google Scholar 

  15. Pfeiffer, M., et al.: Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_14

    Chapter  Google Scholar 

  16. Pfeiffer, M., Riediger, C., Weitz, J., Speidel, S.: Learning soft tissue behavior of organs for surgical navigation with convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 14(7), 1147–1155 (2019). https://doi.org/10.1007/s11548-019-01965-7

    Article  Google Scholar 

  17. Plantefeve, R., Peterlik, I., Haouchine, N., Cotin, S.: Patient-specific biomechanical modeling for guidance during minimally-invasive hepatic surgery. Ann. Biomed. Eng. 143, 113083 (2015)

    Google Scholar 

  18. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  19. Smith, L.N., Topin, N.: Super-convergence: very fast training of residual networks using large learning rates. CoRR abs/1708.07120 (2017)

    Google Scholar 

  20. Suwelack, S., et al.: Physics-based shape matching for intraoperative image guidance. Med. phys. 41, (2014)

    Google Scholar 

  21. Wang, H., Guo, J., Yan, D.-M., Quan, W., Zhang, X.: Learning 3D Keypoint descriptors for non-rigid shape matching. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 3–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_1

    Chapter  Google Scholar 

  22. Yang, G., Manela, J., Happold, M., Ramanan, D.: Hierarchical deep stereo matching on high-resolution images. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micha Pfeiffer .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2751 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pfeiffer, M. et al. (2020). Non-Rigid Volume to Surface Registration Using a Data-Driven Biomechanical Model. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59719-1_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59718-4

  • Online ISBN: 978-3-030-59719-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics