Skip to main content

Automatic Probe Movement Guidance for Freehand Obstetric Ultrasound

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12263))

Abstract

We present the first system that provides real-time probe movement guidance for acquiring standard planes in routine freehand obstetric ultrasound scanning. Such a system can contribute to the worldwide deployment of obstetric ultrasound scanning by lowering the required level of operator expertise. The system employs an artificial neural network that receives the ultrasound video signal and the motion signal of an inertial measurement unit (IMU) that is attached to the probe, and predicts a guidance signal. The network termed US-GuideNet predicts either the movement towards the standard plane position (goal prediction), or the next movement that an expert sonographer would perform (action prediction). While existing models for other ultrasound applications are trained with simulations or phantoms, we train our model with real-world ultrasound video and probe motion data from 464 routine clinical scans by 17 accredited sonographers. Evaluations for 3 standard plane types show that the model provides a useful guidance signal with an accuracy of 88.8% for goal prediction and 90.9% for action prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahner, D.P., et al.: Language of transducer manipulation. J. Ultrasound Med. 35(1), 183–188 (2016)

    Article  Google Scholar 

  2. Baumgartner, C.F., et al.: SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans. Med. Imag. 36(11), 2204–2215 (2017)

    Article  Google Scholar 

  3. Britton, N., Miller, M.A., Safadi, S., Siegel, A., Levine, A.R., McCurdy, M.T.: Tele-ultrasound in resource-limited settings: a systematic review. Front. Public Health 7, 244 (2019)

    Article  Google Scholar 

  4. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. In: Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-8), pp. 103–111 (2014)

    Google Scholar 

  5. Housden, R., Treece, G.M., Gee, A.H., Prager, R.W.: Calibration of an orientation sensor for freehand 3D ultrasound and its use in a hybrid acquisition system. BioMed. Eng. OnLine 7(1), 5 (2008)

    Article  Google Scholar 

  6. Jarosik, P., Lewandowski, M.: Automatic ultrasound guidance based on deep reinforcement learning. In: IEEE International Ultrasonics Symposium (IUS), pp. 475–478 (2019)

    Google Scholar 

  7. Li, Y., et al.: Standard plane detection in 3D fetal ultrasound using an iterative transformation network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 392–400. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_45

    Chapter  Google Scholar 

  8. Liang, K., Rogers, A.J., Light, E.D., von Allmen, D., Smith, S.W.: Three-dimensional ultrasound guidance of autonomous robotic breast biopsy: feasibility study. Ultrasound Med. Biol. 36(1), 173–177 (2010)

    Article  Google Scholar 

  9. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  10. Maraci, M.A., Bridge, C.P., Napolitano, R., Papageorghiou, A., Noble, J.A.: A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat. Med. Image Anal. 37, 22–36 (2017)

    Article  Google Scholar 

  11. Mebarki, R., Krupa, A., Chaumette, F.: 2-D ultrasound probe complete guidance by visual servoing using image moments. IEEE Trans. Robot. 26(2), 296–306 (2010)

    Article  Google Scholar 

  12. Milletari, F., Birodkar, V., Sofka, M.: Straight to the point: reinforcement learning for user guidance in ultrasound. In: Wang, Q., et al. (eds.) PIPPI/SUSI -2019. LNCS, vol. 11798, pp. 3–10. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32875-7_1

    Chapter  Google Scholar 

  13. Mustafa, A.S.B., et al.: Development of robotic system for autonomous liver screening using ultrasound scanning device. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 804–809 (2013)

    Google Scholar 

  14. Pan, Y., et al.: Agile autonomous driving using end-to-end deep imitation learning. In: Robotics: Science and Systems (RSS) (2019)

    Google Scholar 

  15. Pavllo, D., Feichtenhofer, C., Auli, M., Grangier, D.: Modeling human motion with quaternion-based neural networks. Int. J. Comput. Vis. 128, 855–872 (2020)

    Article  Google Scholar 

  16. Prevost, R., et al.: 3D freehand ultrasound without external tracking using deep learning. Med. Image Anal. 48, 187–202 (2018)

    Article  Google Scholar 

  17. Rahmatullah, B., Papageorghiou, A., Noble, J.A.: Automated selection of standardized planes from ultrasound volume. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds.) MLMI 2011. LNCS, vol. 7009, pp. 35–42. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24319-6_5

    Chapter  Google Scholar 

  18. Salomon, L.J., et al.: Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet. Gynecol. 37(1), 116–126 (2011)

    Article  Google Scholar 

  19. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4510–4520 (2018)

    Google Scholar 

  20. Shah, S., Bellows, B.A., Adedipe, A.A., Totten, J.E., Backlund, B.H., Sajed, D.: Perceived barriers in the use of ultrasound in developing countries. Crit. Ultrasound J. 7(1), 1–5 (2015). https://doi.org/10.1186/s13089-015-0028-2

    Article  Google Scholar 

  21. Toporek, G., Wang, H., Balicki, M., Xie, H.: Autonomous image-based ultrasound probe positioning via deep learning. In: Hamlyn Symposium on Medical Robotics (2018)

    Google Scholar 

  22. Vilchis, A., Troccaz, J., Cinquin, P., Masuda, K., Pellissier, F.: A new robot architecture for tele-echography. IEEE Trans. Robot. Autom. 19(5), 922–926 (2003)

    Article  Google Scholar 

  23. Wang, S., et al.: Robotic-assisted ultrasound for fetal imaging: evolution from single-arm to dual-arm system. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds.) TAROS 2019. LNCS (LNAI), vol. 11650, pp. 27–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25332-5_3

    Chapter  Google Scholar 

  24. Yaqub, M., Kelly, B., Papageorghiou, A.T., Noble, J.A.: A deep learning solution for automatic fetal neurosonographic diagnostic plane verification using clinical standard constraints. Ultrasound Med. Biol. 43(12), 2925–2933 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the ERC (ERC-ADG-2015 694581, project PULSE) and the NIHR Oxford Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Droste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Droste, R., Drukker, L., Papageorghiou, A.T., Noble, J.A. (2020). Automatic Probe Movement Guidance for Freehand Obstetric Ultrasound. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics