Skip to main content

MRI Image Reconstruction via Learning Optimization Using Neural ODEs

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12262))

Abstract

We propose to formulate MRI image reconstruction as an optimization problem and model the optimization trajectory as a dynamic process using ordinary differential equations (ODEs). We model the dynamics in ODE with a neural network and solve the desired ODE with the off-the-shelf (fixed) solver to obtain reconstructed images. We extend this model and incorporate the knowledge of off-the-shelf ODE solvers into the network design (learned solvers). We investigate several models based on three ODE solvers and compare models with fixed solvers and learned solvers. Our models achieve better reconstruction results and are more parameter efficient than other popular methods such as UNet and cascaded CNN. We introduce a new way of tackling the MRI reconstruction problem by modeling the continuous optimization dynamics using neural ODEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://fastmri.org/leaderboards.

References

  1. Aggarwal, H.K., Mani, M.P., Jacob, M.: Modl: model-based deep learning architecture for inverse problems. IEEE TMI 38(2), 394–405 (2018)

    Google Scholar 

  2. Akçakaya, M., Moeller, S., Weingärtner, S., Uğurbil, K.: Scan-specific robust artificial-neural-networks for k-space interpolation (raki) reconstruction: database-free deep learning for fast imaging. MRM 81(1), 439–453 (2019)

    Article  Google Scholar 

  3. Bao, L., et al.: Undersampled MR image reconstruction using an enhanced recursive residual network. J. Magn. Reson. 305, 232–246 (2019)

    Article  Google Scholar 

  4. Chen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In: NIPS, pp. 6571–6583 (2018)

    Google Scholar 

  5. Chen, T., Xu, B., Zhang, C., Guestrin, C.: Training deep nets with sublinear memory cost. arXiv:1604.06174 (2016)

  6. Chen, Y., Xiao, T., Li, C., Liu, Q., Wang, S.: Model-based convolutional de-aliasing network learning for parallel MR imaging. In: MICCAI, pp. 30–38. Springer (2019)

    Google Scholar 

  7. Duan, J., et al.: VS-Net: variable splitting network for accelerated parallel MRI reconstruction. In: MICCAI, pp. 713–722. Springer (2019)

    Google Scholar 

  8. Eo, T., Jun, Y., Kim, T., Jang, J., Lee, H.J., Hwang, D.: KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. MRM 80(5), 2188–2201 (2018)

    Article  Google Scholar 

  9. Gholami, A., Keutzer, K., Biros, G.: ANODE: unconditionally accurate memory-efficient gradients for neural odes. arXiv:1902.10298 (2019)

  10. Gilton, D., Ongie, G., Willett, R.: Neumann networks for inverse problems in imaging. arXiv:1901.03707 (2019)

  11. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. MRM 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  12. Hammernik, K., Schlemper, J., Qin, C., Duan, J., Summers, R.M., Rueckert, D.: \(\sum \)-net: systematic evaluation of iterative deep neural networks for fast parallel MR image reconstruction. arXiv:1912.09278 (2019)

  13. Han, Y., Sunwoo, L., Ye, J.C.: k-space deep learning for accelerated MRI. IEEE TMI 39(2), 377–386 (2019)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  15. He, X., Mo, Z., Wang, P., Liu, Y., Yang, M., Cheng, J.: ODE-inspired network design for single image super-resolution. In: CVPR, pp. 1732–1741 (2019)

    Google Scholar 

  16. Huang, Q., Yang, D., Wu, P., Qu, H., Yi, J., Metaxas, D.: MRI reconstruction via cascaded channel-wise attention network. In: ISBI, pp. 1622–1626. IEEE (2019)

    Google Scholar 

  17. Knoll, F., et al.: Deep learning methods for parallel magnetic resonance image reconstruction. arXiv:1904.01112 (2019)

  18. Lee, D., Yoo, J., Tak, S., Ye, J.C.: Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE T. Biomed. Eng. 65(9), 1985–1995 (2018)

    Article  Google Scholar 

  19. Liang, D., Cheng, J., Ke, Z., Ying, L.: Deep MRI reconstruction: unrolled optimization algorithms meet neural networks. arXiv:1907.11711 (2019)

  20. Liu, L., et al.: On the variance of the adaptive learning rate and beyond. arXiv:1908.03265 (2019)

  21. Mardani, M., et al.: Deep generative adversarial networks for compressed sensing automates MRI. arXiv:1706.00051 (2017)

  22. Paoletti, M.E., Haut, J.M., Plaza, J., Plaza, A.: Neural ordinary differential equations for hyperspectral image classification. IEEE TGRS 58(3), 1718–1734 (2019)

    Google Scholar 

  23. Pezzotti, N., et al.: Adaptive-CS-net: eastMRI with adaptive intelligence. arXiv:1912.12259 (2019)

  24. Poddar, S., Jacob, M.: Dynamic MRI using smoothness regularization on manifolds (storm). IEEE TMI 35(4), 1106–1115 (2015)

    Google Scholar 

  25. Putzky, P., Welling, M.: Invert to learn to invert. In: NIPS, pp. 444–454 (2019)

    Google Scholar 

  26. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE TMI 38(1), 280–290 (2018)

    Google Scholar 

  27. Ravishankar, S., Ye, J.C., Fessler, J.A.: Image reconstruction: from sparsity to data-adaptive methods and machine learning. arXiv:1904.02816 (2019)

  28. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: MICCAI, pp. 234–241. Springer (2015)

    Google Scholar 

  29. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE TMI 37(2), 491–503 (2017)

    Google Scholar 

  30. Souza, R., Bento, M., Nogovitsyn, N., Chung, K.J., Lebel, R.M., Frayne, R.: Dual-domain cascade of u-nets for multi-channel magnetic resonance image reconstruction. arXiv:1911.01458 (2019)

  31. Souza, R., Frayne, R.: A hybrid frequency-domain/image-domain deep network for magnetic resonance image reconstruction. In: SIBGRAPI, pp. 257–264. IEEE (2019)

    Google Scholar 

  32. Sriram, A., et al.: End-to-end variational networks for accelerated MRI reconstruction. arXiv:2004.06688 (2020)

  33. Sun, J., Li, H., Xu, Z., et al.: Deep ADMM-Net for compressive sensing MRI. In: NIPS, pp. 10–18 (2016)

    Google Scholar 

  34. Wang, P., Chen, E.Z., Chen, T., Patel, V.M., Sun, S.: Pyramid convolutional RNN for MRI reconstruction. arXiv:1912.00543 (2019)

  35. Wang, S., et al.: Dimension: dynamic MR imaging with both k-space and spatial prior knowledge obtained via multi-supervised network training. arXiv:1810.00302 (2018)

  36. Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE TMI 37(6), 1310–1321 (2017)

    Google Scholar 

  37. Yazdanpanah, A.P., Afacan, O., Warfield, S.K.: ODE-based deep network for MRI reconstruction. arXiv:1912.12325 (2019)

  38. Zbontar, J., et al.: FastMRI: an open dataset and benchmarks for accelerated MRI. arXiv:1811.08839 (2018)

  39. Zhang, J., Ghanem, B.: ISTA-net: interpretable optimization-inspired deep network for image compressive sensing. In: CVPR, pp. 1828–1837 (2018)

    Google Scholar 

  40. Zhang, M., Lucas, J., Ba, J., Hinton, G.E.: Lookahead optimizer: k steps forward, 1 step back. In: NIPS, pp. 9593–9604 (2019)

    Google Scholar 

  41. Zhang, T., et al.: ANODEV2: a coupled neural ODE evolution framework. arXiv:1906.04596 (2019)

  42. Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanhui Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, E.Z., Chen, T., Sun, S. (2020). MRI Image Reconstruction via Learning Optimization Using Neural ODEs. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics