Skip to main content

Interpretation of Disease Evidence for Medical Images Using Adversarial Deformation Fields

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

The high complexity of deep learning models is associated with the difficulty of explaining what evidence they recognize as correlating with specific disease labels. This information is critical for building trust in models and finding their biases. Until now, automated deep learning visualization solutions have identified regions of images used by classifiers, but these solutions are too coarse, too noisy, or have a limited representation of the way images can change. We propose a novel method for formulating and presenting spatial explanations of disease evidence, called deformation field interpretation with generative adversarial networks (DeFI-GAN). An adversarially trained generator produces deformation fields that modify images of diseased patients to resemble images of healthy patients. We validate the method studying chronic obstructive pulmonary disease (COPD) evidence in chest x-rays (CXRs) and Alzheimer’s disease (AD) evidence in brain MRIs. When extracting disease evidence in longitudinal data, we show compelling results against a baseline producing difference maps. DeFI-GAN also highlights disease biomarkers not found by previous methods and potential biases that may help in investigations of the dataset and of the adopted learning methods.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code is available at https://github.com/ricbl/defigan.

  2. 2.

    IRB_00104019, PI: Schroeder MD.

  3. 3.

    orthanc-server.com.

  4. 4.

    VA-GAN’s original preprocessing code, list of subjects, and TensorFlow implementation are available in https://github.com/baumgach/vagan-code/.

References

  1. About ADNI (2017). http://adni.loni.usc.edu/about/. Accessed 11 Mar 2020

  2. Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. In: ICLR (2018)

    Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICML (2017)

    Google Scholar 

  4. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), 1–46 (2015). https://doi.org/10.1371/journal.pone.0130140

    Article  Google Scholar 

  5. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: CVPR (2018)

    Google Scholar 

  6. Baumgartner, C.F., Koch, L.M., Tezcan, K.C., Ang, J.X.: Visual feature attribution using Wasserstein GANs. In: CVPR (2018). https://doi.org/10.1109/CVPR.2018.00867

  7. Bigolin Lanfredi, R., Schroeder, J.D., Vachet, C., Tasdizen, T.: Adversarial regression training for visualizing the progression of chronic obstructive pulmonary disease with chest x-rays. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 685–693. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_76

    Chapter  Google Scholar 

  8. Ciccarese, F., et al.: Saber-sheath trachea as a marker of severe airflow obstruction in chronic obstructive pulmonary disease. Radiol. Med. (Torino) 119(2), 90–96 (2013). https://doi.org/10.1007/s11547-013-0318-3

    Article  Google Scholar 

  9. Dalca, A., Rakic, M., Guttag, J., Sabuncu, M.: Learning conditional deformable templates with convolutional networks. In: NeurIPS (2019)

    Google Scholar 

  10. Feng, X., Yang, J., Laine, A.F., Angelini, E.D.: Discriminative localization in CNNs for weakly-supervised segmentation of pulmonary nodules. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 568–576. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_65

    Chapter  Google Scholar 

  11. Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L.: Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1), 313–327 (2011). https://doi.org/10.1016/j.neuroimage.2010.07.033

    Article  Google Scholar 

  12. Fonov, V., Evans, A., McKinstry, R., Almli, C., Collins, D.: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47, S102 (2009). https://doi.org/10.1016/S1053-8119(09)70884-5

    Article  Google Scholar 

  13. Foster, W.L., et al.: The emphysemas: radiologic-pathologic correlations. RadioGraphics 13(2), 311–328 (1993). https://doi.org/10.1148/radiographics.13.2.8460222

    Article  Google Scholar 

  14. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  15. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs. In: NeurIPS (2017)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016). https://doi.org/10.1109/CVPR.2016.90

  17. Hägele, M., et al.: Resolving challenges in deep learning-based analyses of histopathological images using explanation methods. CoRR abs/1908.06943 (2019)

    Google Scholar 

  18. Iglesias, J.E., Liu, C., Thompson, P.M., Tu, Z.: Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans. Med. Imag. 30(9), 1617–1634 (2011). https://doi.org/10.1109/TMI.2011.2138152

    Article  Google Scholar 

  19. Jaramillo, J.D., et al.: Reduced bone density and vertebral fractures in smokers. Men and COPD patients at increased risk. Ann. Am. Thorac. Soc. 12(5), 648–656 (2015). https://doi.org/10.1513/AnnalsATS.201412-591OC

    Article  Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  21. Langlotz, C.P., et al.: A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop. Radiology 291, 781–791 (2019)

    Article  Google Scholar 

  22. Ledig, C., Schuh, A., Guerrero, R., Heckemann, R., Rueckert, D.: Structural brain imaging in Alzheimer’s disease and mild cognitive impairment: biomarker analysis and shared morphometry database. Sci. Rep. 8 (2018). https://doi.org/10.1038/s41598-018-29295-9

  23. Lee, J., Ryan, J., Andreescu, C., Aizenstein, H., Lim, H.K.: Brainstem morphological changes in Alzheimer’s disease. NeuroReport 26, 411–415 (2015). https://doi.org/10.1097/WNR.0000000000000362

    Article  Google Scholar 

  24. Lowekamp, B., Chen, D., Ibanez, L., Blezek, D.: The design of SimpleITK. Front. Neuroinform. 7, 45 (2013). https://doi.org/10.3389/fninf.2013.00045

    Article  Google Scholar 

  25. Martin-Harris, B.: Optimal patterns of care in patients with chronic obstructive pulmonary disease. Semin. Speech Lang. 21(04), 0311–0322 (2000). https://doi.org/10.1055/s-2000-8384

    Article  Google Scholar 

  26. Morais, N., Cruz, J., Marques, A.: Posture and mobility of the upper body quadrant and pulmonary function in COPD: an exploratory study. Braz. J. Phys. Therapy 20, 345–354 (2016). https://doi.org/10.1590/bjpt-rbf.2014.0162

    Article  Google Scholar 

  27. Rajpurkar, P., Irvin, J., et al.: CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning. CoRR abs/1711.05225 (2017)

    Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  MATH  Google Scholar 

  30. Scahill, R.I., Schott, J.M., Stevens, J.M., Rossor, M.N., Fox, N.C.: Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. PNAS 99(7), 4703–4707 (2002). https://doi.org/10.1073/pnas.052587399

    Article  Google Scholar 

  31. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002). https://doi.org/10.1002/hbm.10062

    Article  Google Scholar 

  32. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219 (2004). https://doi.org/10.1016/j.neuroimage.2004.07.051

    Article  Google Scholar 

  33. Tabatabaei Jafari, H., Walsh, E., Shaw, M., Cherbuin, N.: The cerebellum shrinks faster than normal ageing in Alzheimer’s disease but not in mild cognitive impairment. Hum. Brain Mapp. 38 (2017). https://doi.org/10.1002/hbm.23580

  34. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imag. 29(6), 1310–1320 (2010). https://doi.org/10.1109/TMI.2010.2046908

    Article  Google Scholar 

  35. Washko, G.R.: Diagnostic imaging in COPD. Semin. Resp. Crit. Care 31(3), 276–285 (2010). https://doi.org/10.1055/s-0030-1254068

    Article  Google Scholar 

  36. Xiao, C., Zhu, J.Y., Li, B., He, W., Liu, M., Song, D.: Spatially transformed adversarial examples. In: ICLR (2018)

    Google Scholar 

  37. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR (2016). https://doi.org/10.1109/CVPR.2016.319

  38. Zhou, Y., et al.: The association between BMI and COPD: the results of two population-based studies in Guangzhou, China. COPD 10(5), 567–572 (2013). https://doi.org/10.3109/15412555.2013.781579

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Bigolin Lanfredi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7875 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bigolin Lanfredi, R., Schroeder, J.D., Vachet, C., Tasdizen, T. (2020). Interpretation of Disease Evidence for Medical Images Using Adversarial Deformation Fields. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics