Skip to main content

Analyzing CNN Based Behavioural Malware Detection Techniques on Cloud IaaS

  • Conference paper
  • First Online:
Cloud Computing – CLOUD 2020 (CLOUD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12403))

Included in the following conference series:

Abstract

Cloud Infrastructure as a Service (IaaS) is vulnerable to malware due to its exposure to external adversaries, making it a lucrative attack vector for malicious actors. A datacenter infected with malware can cause data loss and/or major disruptions to service for its users. This paper analyzes and compares various Convolutional Neural Networks (CNNs) for online detection of malware in cloud IaaS. The detection is performed based on behavioural data using process level performance metrics including cpu usage, memory usage, disk usage etc. We have used the state of the art DenseNets and ResNets in effectively detecting malware in online cloud system. These CNNs are designed to extract features from data gathered from live malware running on a real cloud environment. Experiments are performed on OpenStack (a cloud IaaS software) testbed designed to replicate a typical 3-tier web architecture. Comparative analysis is performed for different CNN models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Openstack. https://www.openstack.org/.

  2. 2.

    NS2 Manual. http://www.isi.edu/nsnam/ns/doc/node509.html.

  3. 3.

    VirusTotal Website. https://www.virustotal.com.

References

  1. Mell, P., Grance, T., et al.: The NIST definition of cloud computing (2011)

    Google Scholar 

  2. Gruschka, N., et al.: Attack surfaces: a taxonomy for attacks on cloud services. In: Proceedings of IEEE International Conference on Cloud Computing, pp. 276–279 (2010)

    Google Scholar 

  3. Abdelsalam, M., et al.: Malware detection in cloud infrastructures using convolutional neural networks. In: Proceedings of IEEE International Conference on Cloud Computing (CLOUD), pp. 162–169 (2018)

    Google Scholar 

  4. Abdelsalam, M., Krishnan, R., Sandhu, R.: Clustering-based IaaS cloud monitoring. In: Proceedings of IEEE International Conference on Cloud Computing (CLOUD), pp. 672–679 (2017)

    Google Scholar 

  5. Abdelsalam, M., Krishnan, R., Sandhu, R.: Online malware detection in cloud auto-scaling systems using shallow convolutional neural networks. In: Foley, S.N. (ed.) DBSec 2019. LNCS, vol. 11559, pp. 381–397. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22479-0_20

    Chapter  Google Scholar 

  6. Pannu, H.S. Liu, J., Fu, S.: Aad: adaptive anomaly detection system for cloud computing infrastructures. In: Proceedings of IEEE Symposium on Reliable Distributed Systems, pp. 396–397 (2012)

    Google Scholar 

  7. Dawson, J.A., et al.: Phase space detection of virtual machine cyber events through hypervisor-level system call analysis. In: Proceedings of IEEE International Conference on Data Intelligence and Security (ICDIS), pp. 159–167 (2018)

    Google Scholar 

  8. Wang, C.: Ebat: online methods for detecting utility cloud anomalies. In: Proceedings of the Middleware Doctoral Symposium, pp. 1–6 (2009)

    Google Scholar 

  9. Watson, M.R., et al.: Malware detection in cloud computing infrastructures. IEEE Trans. Dependable Secure Comput. 13(2), 192–205 (2015)

    Article  Google Scholar 

  10. Alazab, M., et al.: Zero-day malware detection based on supervised learning algorithms of API call signatures. In: Proceedings of the Australasian Data Mining Conference, pp. 171–182. Australian Computer Society Inc. (2011)

    Google Scholar 

  11. Pirscoveanu, R.S., et al.: Analysis of malware behavior: type classification using machine learning. In: Proceedings of IEEE International Conference on Cyber Situational Awareness, Data Analytics and Assessment, pp. 1–7 (2015)

    Google Scholar 

  12. Tobiyama, S., et al.: Malware detection with deep neural network using process behavior. In: Proceedings of IEEE Annual Computer Software and Applications Conference, vol. 2, pp. 577–582 (2016)

    Google Scholar 

  13. Luckett, P., et al.: Neural network analysis of system call timing for rootkit detection. In: Proceedings of Cybersecurity Symposium (CYBERSEC), pp. 1–6, April 2016

    Google Scholar 

  14. Dini, G., Martinelli, F., Saracino, A., Sgandurra, D.: MADAM: a multi-level anomaly detector for android malware. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2012. LNCS, vol. 7531, pp. 240–253. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33704-8_21

    Chapter  Google Scholar 

  15. Demme, J., et al.: On the feasibility of online malware detection with performance counters. ACM SIGARCH Comput. Archit. News 41(3), 559–570 (2013)

    Article  Google Scholar 

  16. Khasawneh, K.N., Ozsoy, M., Donovick, C., Abu-Ghazaleh, N., Ponomarev, D.: Ensemble learning for low-level hardware-supported malware detection. In: Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404, pp. 3–25. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26362-5_1

    Chapter  Google Scholar 

  17. Xu, Z., et al.: Malware detection using machine learning based analysis of virtual memory access patterns. In: Proceedings of IEEE Design, Automation & Test in Europe Conference & Exhibition, pp. 169–174 (2017)

    Google Scholar 

  18. Sterbenz, J.P.G., et al.: Resilience and survivability in communication networks: Strategies, principles, and survey of disciplines. Comput. Networks 54(8), 1245–1265 (2010)

    Article  Google Scholar 

  19. Watson, M.R., Shirazi, N.--H., Marnerides, A.K., Mauthe, A., Hutchison, D.: Towards a distributed, self-organising approach to malware detection in cloud computing. In: Elmenreich, W., Dressler, F., Loreto, V. (eds.) IWSOS 2013. LNCS, vol. 8221, pp. 182–185. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54140-7_19

    Chapter  Google Scholar 

  20. Marnerides, A.K., et al.: A multi-level resilience framework for unified networked environments. In: Proceedings of IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 1369–1372 (2015)

    Google Scholar 

  21. Fan, Y., Ye, Y., Chen, L.: Malicious sequential pattern mining for automatic malware detection. Expert Syst. Appl. 52, 16–25 (2016)

    Article  Google Scholar 

  22. Firdausi, I., et al.: Analysis of machine learning techniques used in behavior-based malware detection. In: Proceedings of IEEE International Conference on Advances in Computing, Control, and Telecommunication Technologies, pp. 201–203 (2010)

    Google Scholar 

  23. Azmandian, F., et al.: Virtual machine monitor-based lightweight intrusion detection. ACM SIGOPS Oper. Syst. Rev. 45(2), 38–53 (2011)

    Article  Google Scholar 

  24. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  25. Agarap, A.F.: Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375 (2018)

  26. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  28. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR, abs/1608.06993 (2016)

    Google Scholar 

  29. Pascanu, R., Mikolov, T., Bengio, Y.: Understanding the exploding gradient problem. CoRR, abs/1211.5063 (2012)

    Google Scholar 

  30. Metz, C.E.: Receiver operating characteristic analysis: a tool for the quantitative evaluation of observer performance and imaging systems. J. Am. College Radiol. 3(6), 413–422 (2006)

    Article  Google Scholar 

Download references

Acknowledgment

This work is partially supported by NSF SFS Grant DGE-1565562.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew McDole , Mahmoud Abdelsalam , Maanak Gupta or Sudip Mittal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McDole, A., Abdelsalam, M., Gupta, M., Mittal, S. (2020). Analyzing CNN Based Behavioural Malware Detection Techniques on Cloud IaaS. In: Zhang, Q., Wang, Y., Zhang, LJ. (eds) Cloud Computing – CLOUD 2020. CLOUD 2020. Lecture Notes in Computer Science(), vol 12403. Springer, Cham. https://doi.org/10.1007/978-3-030-59635-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59635-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59634-7

  • Online ISBN: 978-3-030-59635-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics