Skip to main content

A Neural Framework for Chinese Medical Named Entity Recognition

  • Conference paper
  • First Online:
Artificial Intelligence and Mobile Services – AIMS 2020 (AIMS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12401))

Included in the following conference series:

Abstract

Named Entity Recognition (NER) in the medical field targets to extract names of disease, surgery, and the organ location from medical texts, which is considered as the fundamental work for medical robots and intelligent diagnosis systems. It is very challenging to recognize the named entities in Chinese medical texts, because (a) one single Chinese medical named entity is usually expressed with more characters/words than other languages, i.e. 3.2 words and 7.3 characters in average; (b) different types of medical named entities are usually nested together. To address the above issue, this paper presents a neural framework that is constructed by two modules: a pre-trained module to distinguish each individual entity from the nested expressions, while a modified Bi-LSTM module to effectively identify long entities. We conducted the experiments based on the CCKS2019 dataset, our proposed method can identify the medical entity in Chinese, especially for those nested entities embodied in long expressions, and 95.83% was achieved in terms of F1-score, and 18.64% improvement was achieved compared to the baseline models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. https://doi.org/10.1142/9789812799371_0043

  2. de Benito-Gorron, D., Lozano-Diez, A., Toledano, D.T., Gonzalez Rodriguez, J.: Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset. EURASIP J. Audio Speech Music Process. 2019(1). https://doi.org/10.1186/s13636-019-0152-1

  3. Fellbaum, C.: WordNet. In: Poli, R., Healy, M., Kameas, A. (eds.) Theory and Applications of Ontology: Computer Applications, pp. 231–243. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-8847-5_10

  4. Huang, L., May, J., Pan, X., Ji, H.: Building a fine-grained entity typing system overnight for a new X(X = Language, Domain, Genre), 10 March 2016. arXiv:1603.03112v1

  5. Li, Y., Bontcheva, K., Cunningham, H.: SVM based learning system for information extraction. In: Winkler, J., Niranjan, M., Lawrence, N. (eds.) DSMML 2004. LNCS (LNAI), vol. 3635, pp. 319–339. Springer, Heidelberg (2005). https://doi.org/10.1007/11559887_19

    Chapter  MATH  Google Scholar 

  6. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging, 9 August 2015. arXiv:1508.01991

  7. Marek, R., Crichton, G.K.O., Pyysalo, S.: Attending to characters in neural sequence labeling models, 14 November 2016. arXiv:1611.04361

  8. Bharadwaj, A., Mortensen, D., Dyer, C., Carbonell, J.: Phonologically aware neural model for named entity recognition in low resource transfer settings. https://doi.org/10.18653/v1/d16-1153

  9. Friedman, C., Alderson, P., Austin, J., Cimino, J., Johnson, S.: A general natural-language text processor for clinical radiology. J. Am. Med. Inform. Assoc. 1(2), 161–174 (1994)

    Article  Google Scholar 

  10. Friedman, C., Kra, P., Yu, H., Krauthammer, M., Rzhetsky, A.: GENIES: a natural-language processing system for the extraction of molecular pathways from journal articles. Bioinformatics 17(Suppl. 1), S74–S82 (2001)

    Article  Google Scholar 

  11. Wang, Y.: Annotating and recognising named entities in clinical notes. https://doi.org/10.3115/1667884.1667888

  12. Uzuner, O., South, B., Shen, S., Duvall, S.: 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J. Am. Med. Inform. Assoc. 18(5), 552–556 (2011)

    Article  Google Scholar 

  13. Kiritchenko, S., de Bruijn, B., Cherry, C.: NRC at i2b2: one challenge, three practical tasks, nine statistical systems, hundreds of clinical records, millions of useful features. In: Proceedings of the 2010 i2b2/VA workshop on challenges in natural language processing for clinical data (2010)

    Google Scholar 

  14. CCKS 2019 NER of CEMR. https://www.biendata.com/competition/ccks_2019_1/

  15. Rong, X.: word2vec parameter learning explained, 11 November 2014. arXiv:1411.2738v4

  16. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding, 11 October 2018. arXiv:1810.04805

  17. Gong, C., Tang, J., Zhou, S., Hao, Z., Wang, J.: Chinese named entity recognition with Bert. ISBN: 978-1-60595-651-0 (2019)

    Google Scholar 

  18. Xishuang, D., Shanta, C., Lijun, Q.: Deep learning for named entity recognition on Chinese electronic medical records: Combining deep transfer learning with multitask bi-directional LSTM RNN. PLoS ONE (2019). https://doi.org/10.1371/journal.pone.0216046

    Article  Google Scholar 

  19. Konkol, M., Konopík, M.: CRF-Based Czech named entity recognizer and consolidation of Czech NER research. In: Habernal, I., Matoušek, V. (eds.) TSD 2013. LNCS (LNAI), vol. 8082, pp. 153–160. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40585-3_20

    Chapter  Google Scholar 

Download references

Acknowledgements

This research is supported by the Natural Science Foundation of China (61976066, 61502115, U1636103), the Fundamental Research Fund for the Central Universities (3262019T29), the Joint funding (SKX182010023, 2019GA35) and Students’ Academic Training Program of UIR (3262019SXK15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binyang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Z., Zhou, Z., Xing, W., Wu, J., Chang, Y., Li, B. (2020). A Neural Framework for Chinese Medical Named Entity Recognition. In: Xu, R., De, W., Zhong, W., Tian, L., Bai, Y., Zhang, LJ. (eds) Artificial Intelligence and Mobile Services – AIMS 2020. AIMS 2020. Lecture Notes in Computer Science(), vol 12401. Springer, Cham. https://doi.org/10.1007/978-3-030-59605-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59605-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59604-0

  • Online ISBN: 978-3-030-59605-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics