Skip to main content

Modern Materials and Surface Modification Methods Used in the Manufacture of Hydraulic Actuators

  • Conference paper
  • First Online:
Advances in Hydraulic and Pneumatic Drives and Control 2020 (NSHP 2020)

Abstract

The article presents an overview of various materials of which pistons, piston rods and cylinders of hydraulic actuators are currently made. Surface modification issue, aimed at improving both strength and operational properties of the components is also discussed.

The materials, of which the basic parts of the actuators are made, will be discussed in detail. In the case of cylinders, it is usually quality steel. Pistons are made of ductile iron or structural steel. Sometimes aluminium alloys are also used for reducing the weight of the element while maintaining adequate mechanical strength. Piston rods are currently one of the most complex in machining parts. They are made of surface-hardened or quenched and tempered steel (possibly stainless steel) and are most often coated with chromium. Recently, many alternatives to chromium have been created due to its harmfulness for people and environment. These are, for example, tungsten carbide coatings and amorphous carbon coatings. Usage of composite materials and plastics is also listed among modern technologies for making components of actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stryczek, S.: Napęd hydrostatyczny, 4th edn, vol. 1. Wydawnictwa Naukowo-Techniczne, Warszawa (2003)

    Google Scholar 

  2. Bauer, W.: Hydraulic components design. In: Hydropneumatic Suspension Systems, 4th edn, pp. 95–140. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15147-7_4

  3. Uzny, S., Kutrowski, Ł.: Obciążalność rozsuniętego teleskopowego siłownika hydraulicznego przy uwzględnieniu wyboczenia oraz wytężenia materiału. Modelowanie inżynierskie 37(68), 125–131 (2018)

    Google Scholar 

  4. Ashby, M.F.: The design process. In: Materials Selection in Mechanical Design, 4th edn, pp. 15–29. Butterworth-Heinemann, Oxford (2011). https://doi.org/10.1016/b978-1-85617-663-7.00002-3

  5. Uzny, S., Kutrowski, Ł.: Strength analysis of a telescopic hydraulic cylinder elastically mounted on both ends. J. Appl. Math. Comput. Mech. 18(1), 89–96 (2019). https://doi.org/10.17512/jamcm.2019.1.08

    Article  MathSciNet  Google Scholar 

  6. Muraki, M., Kinbara, E., Konishi, T.: A laboratory simulation for stick-slip phenomena on the hydraulic cylinder of a construction machine. Tribol. Int. 36(10), 739–744 (2003). https://doi.org/10.1016/s0301-679x(03)00054-9

    Article  Google Scholar 

  7. Osiecki, A.: Hydrostatyczny napęd maszyn, 2nd edn. Wydawnictwa Naukowo-Techniczne, Warszawa (2004)

    Google Scholar 

  8. Kijewska, A., Bluszcz, A.: Analiza poziomów śladu węglowego dla świata i krajów UE. Systemy Wspomagania w Inżynierii Produkcji 6(2), 169–177 (2017)

    Google Scholar 

  9. 2030 climate and energy goals for a competitive, secure and low-carbon EU economy. European Commission Press Release, Brussels, 22 January 2014. http://ec.europa.eu/commission/presscorner/detail/en/IP_14_54. Accessed 18 Feb 2020

  10. Harvey, F.: New technology could slash carbon emissions from aluminium production. The Guardian article, 10 May 2018. http://www.theguardian.com/environment/2018/may/10/new-technology-slash-aluminium-production-carbon-emissions. Accessed 18 Feb 2020

  11. Dašić, P., Manđuka, A., Pantić, R.: Research of optimal parameters of machining big hydraulic cylinders from the aspect of quality. Ann. Oradea Univ. Fascicle Manag. Technol. Eng. VII(XVII), 1563–1571 (2008)

    Google Scholar 

  12. Jakubczak, H., Rojek, J.: Zmęczeniowe pękanie siłowników hydraulicznych. Diagnostyka 36, 61–66 (2005)

    Google Scholar 

  13. Kawiak, M.: Spawanie tłoczyska siłowników hydraulicznych. Przegląd Spawalniczy 85(2), 6–10 (2013)

    Google Scholar 

  14. Chalamoński, M.: Równomierność ruchu tłoka siłownika hydraulicznego. Diagnostyka 30, 97–100 (2004)

    Google Scholar 

  15. Bohman, E.: Understanding buckling strength of hydraulic cylinders. The Hydraulics & Pneumatics article, 9 March 2017. http://www.hydraulicspneumatics.com/technologies/cylinders-actuators/article/21887243/understanding-buckling-strength-of-hydraulic-cylinders. Accessed 18 Feb 2020

  16. Kowalski, K., Złoto, T.: Exploitation and repair of hydraulic cylinders used in mobile machinery. TEKA Comm. Motorization Energetics Agric. 14(4), 53–58 (2014)

    Google Scholar 

  17. Ashby, M.F., Jones, D.R.H.: Light alloys. In: Engineering Materials 2: An Introduction to Microstructures and Processing, 4nd edn, pp. 205–220. Butterworth-Heinemann, Oxford (2012). https://doi.org/10.1016/B978-0-08-096668-7.00011-5

  18. Dobrzański, L.A.: Stale i inne stopy żelaza. In: Podstawy nauki o materiałach i metaloznawstwo, 2nd edn, pp. 653–675. Wydawnictwa Naukowo-Techniczne, Warszawa (2006)

    Google Scholar 

  19. Pawłowski, W., Kępczak, N.: Teoretyczne badania właściwości dynamicznych łóż obrabiarki wykonanych z żeliwa i hybrydowego połączenia żeliwa z odlewem mineralnym. Mechanik 8(9), 199–203 (2015)

    Google Scholar 

  20. Marczewska, I., Bednarek, T., Marczewski, A., Sosnowski, W., Jakubczak, H., Rojek, J.: Practical fatigue analysis of hydraulic cylinders and some design recommendations. Int. J. Fatigue 28(12), 1739–1751 (2006). https://doi.org/10.1016/j.ijfatigue.2006.01.003

    Article  Google Scholar 

  21. Bednarek, T., Sosnowski, W.: Practical fatigue analysis of hydraulic cylinders – part II, damage mechanics approach. Int. J. Fatigue 32(10), 1591–1599 (2010). https://doi.org/10.1016/j.ijfatigue.2010.02.013

    Article  Google Scholar 

  22. Nicoletto, G., Marin, T.: Failure of a heavy-duty hydraulic cylinder and its fatigue re-design. Eng. Fail. Anal. 18(3), 1030–1036 (2011). https://doi.org/10.1016/j.engfailanal.2010.12.019

    Article  Google Scholar 

  23. Mantovani, S.: Feasibility analysis of a double-acting composite cylinder in high-pressure loading conditions for fluid power applications. Appl. Sci. 10(3), 826 (2020). https://doi.org/10.3390/app10030826

    Article  Google Scholar 

  24. Solazzi, L.: Feasibility study of hydraulic cylinder subject to high pressure made of aluminum alloy and composite material. Compos. Struct. 209, 739–746 (2019). https://doi.org/10.1016/j.compstruct.2018.11.021

    Article  Google Scholar 

  25. Solazzi, L., Buffoli, A.: Telescopic hydraulic cylinder made of composite material. Appl. Compos. Mater. 26(4), 1189–1206 (2019). https://doi.org/10.1007/s10443-019-09772-8

    Article  Google Scholar 

  26. Nefed’ev, S.P., Dema, R.R., Kharchenko, M.V., Pelymskaya, I.S., Romanenko, D.N., Zhuravlev, G.M.: Experience in restoring hydraulic cylinder rods by plasma powder surfacing. Chem. Pet. Eng. 52(11–12), 785–789 (2017). https://doi.org/10.1007/s10556-017-0271-4

    Article  Google Scholar 

  27. Luo, P., Hu, J., Tan, S.: Design and realization of hydraulic cylinder. Region Water Conservancy 1(1), 27–34 (2018)

    Google Scholar 

  28. Przybylski, W.: Zastosowanie obróbki nagniataniem w technologii siłowników hydraulicznych. Postępy Nauki i Techniki 6, 196–201 (2011)

    Google Scholar 

  29. Boye, T., Adeyemi, O., Emagbetere, E.: Design and finite element analysis of double - acting, double - ends hydraulic cylinder for industrial automation application. Am. J. Eng. Res. (AJER) 6, 131–138 (2017)

    Google Scholar 

  30. Tonelli, L., Martini, C., Ceschini, L.: Improvement of wear resistance of components for hydraulic actuators: dry sliding tests for coating selection and bench tests for final assessment. Tribol. Int. 115, 154–164 (2017). https://doi.org/10.1016/j.triboint.2017.05.021

    Article  Google Scholar 

  31. Tavares, S.M.O., Viriato, N., Vaz, M., de Castro, P.M.S.T.: Failure analysis of the rod of a hydraulic cylinder. Procedia Struct. Integrity 1, 173–180 (2016). https://doi.org/10.1016/j.prostr.2016.02.024

    Article  Google Scholar 

  32. Dalibón, E.L., Pecina, J.N., Moscatelli, M.N., Ramírez Ramos, M.A., Trava-Airoldi, V.J., Brühl, S.P.: Mechanical and corrosion behaviour of DLC and TiN coatings deposited on martensitic stainless steel. J. Bio Tribo-Corros. 5(2), 1–9 (2019). https://doi.org/10.1007/s40735-019-0228-6

    Article  Google Scholar 

  33. Moreira, D.C., Furtado, H.C., Buarque, J.S., Cardoso, B.R., Merlin, B., Moreira, D.D.C.: Failure analysis of AISI 410 stainless-steel piston rod in spillway floodgate. Eng. Fail. Anal. 97, 506–517 (2019). https://doi.org/10.1016/j.engfailanal.2019.01.035

    Article  Google Scholar 

  34. Sevagin, S.V., Mnatsakanyan, V.U.: Ensuring the required manufacturing quality of hydraulic-cylinder rods in mining machines. In: IOP Conference Series: Materials Science and Engineering, vol. 709, p. 044095 (2020). https://doi.org/10.1088/1757-899x/709/4/044095

  35. Holyakevych, А.А., Orlov, L.M., Pokhmurs’ka, H.V., Student, М.М., Chervins’ka, N.R., Khyl’ko, O.V.: Influence of the phase composition of the layers deposited on the rods of hydraulic cylinders on their local corrosion. Mater. Sci. 50(5), 740–747 (2015). https://doi.org/10.1007/s11003-015-9780-5

    Article  Google Scholar 

  36. Otsima, M.: Material selection process for hydraulic cylinder. In: EAT309 Mechanical Design – Part 5 Materials Review And Selection (2015)

    Google Scholar 

  37. O’Rourke, B.: Pressure ratings and design guidelines for ductile iron manifolds. In: 2014 IFPE Technical Conference: Where all the Solutions Come Together and Connections are Made. NFPA, Las Vegas (2014)

    Google Scholar 

  38. Solazzi, L.: Design and experimental tests on hydraulic actuator made of composite material. Compos. Struct. 232, 111544 (2020). https://doi.org/10.1016/j.compstruct.2019.111544

    Article  Google Scholar 

  39. Lubecki, M.: Selected design issues in hydraulic cylinder made of composite materials. In: Badania i Rozwój Młodych Naukowców w Polsce: Nauki techniczne i inżynieryjne: Materiały, Polimery, Kompozyty, Młodzi Naukowcy, Poznań (2019)

    Google Scholar 

  40. Liu, Y., Zwingmann, B., Schlaich, M.: Carbon fiber reinforced polymer for cable structures—a review. Polymers 7(10), 2078–2099 (2015). https://doi.org/10.3390/polym7101501

    Article  Google Scholar 

  41. Scholz, S., Kroll, L.: Nanocomposite glide surfaces for FRP hydraulic cylinders – evaluation and test. Compos. Part B: Eng. 61, 207–213 (2014). https://doi.org/10.1016/j.compositesb.2014.01.044

    Article  Google Scholar 

  42. Stryczek, P., Przystupa, F., Banaś, M.: Research on series of hydraulic cylinders made of plastics. In: Global Fluid Power Society PhD Symposium (GFPS). IEEE, Samara (2018). https://doi.org/10.1109/gfps.2018.8472385

  43. Tran, X.B., Hafizah, N., Yanada, H.: Modeling of dynamic friction behaviors of hydraulic cylinders. Mechatronics 22(1), 65–75 (2012). https://doi.org/10.1016/j.mechatronics.2011.11.009

    Article  Google Scholar 

  44. Harnisch, M.: Kunststoffe n fluidtechnischen Antrieben Oelhydraulik und Pneumatik, pp. 14–16 (2013)

    Google Scholar 

  45. Tuominen, J., Näkki, J., Pajukoski, H., Miettinen, J., Peltola, T., Vuoristo, P.: Wear and corrosion resistant laser coatings for hydraulic piston rods. J. Laser Appl. 27(2), 022009 (2015). https://doi.org/10.2351/1.4914503

    Article  Google Scholar 

  46. Deng, X., Ju, D.: Modeling and simulation of quenching and tempering process in steels. Phys. Procedia 50, 368–374 (2013). https://doi.org/10.1016/j.phpro.2013.11.057

    Article  Google Scholar 

  47. Denisov, L.V., Boitsov, A.G., Siluyanova, M.V.: Surface hardening in hydraulic cylinders for airplane engines. Russ. Eng. Res. 38(12), 1080–1083 (2018). https://doi.org/10.3103/s1068798x18120237

    Article  Google Scholar 

  48. Dai, L.-Y., Lin, S.-F., Yang, S.-Z., Pan, G.-F., Guo, N., Dai, L.-L.: Cracking cause analysis of 45 steel piston rod. Heat Treat. Metals 36(2), 119–121 (2011)

    Google Scholar 

  49. Awad, M., Hultgren, J., Roberts, W.: Increased resistance to buckling of piston rods through induction hardening, OVAKO Article, Stockholm (2018). http://www.ovako.com/globalassets/products/hard-chromed/ih_buckling_wp.pdf. Accessed 18 Feb 2020

  50. Israelsson, P.: Better steels make better cylinders. The Hydraulics & Pneumatics article, 2 September 2016. https://www.hydraulicspneumatics.com/technologies/cylinders-actuators/article/21885260/better-steels-make-better-cylinders. Accessed 18 Feb 2020

  51. Wach, P., Michalski, J., Tacikowski, J., Kowalski, S., Betiuk, M.: Gazowe azotowanie i jego odmiany w przemysłowych zastosowaniach. Inżynieria Materiałowa 29(6), 808–811 (2008)

    Google Scholar 

  52. Bobzin, K., Öte, M., Linke, T.F., Malik, K.M.: Wear and corrosion resistance of fe-based coatings reinforced by TiC particles for application in hydraulic systems. J. Therm. Spray Technol. 25(1–2), 365–374 (2015). https://doi.org/10.1007/s11666-015-0316-1

    Article  Google Scholar 

  53. Gayathri, N., Karthick, N., Shanmuganathan, V.K., Adhithyan, T.R., Madhan Kumar, T., Gopalakrishnan, J.: Productivity improvement and cost reduction in hydraulic cylinders. Int. J. Eng. Technol. 7(3.34), 382 (2018). https://doi.org/10.14419/ijet.v7i3.34.19232

  54. Aizhambaeva, S.Z., Maximova, A.V.: Development of control system of coating of rod hydraulic cylinders. In: IOP Conference Series: Materials Science and Engineering, vol. 289, p. 012020 (2018). https://doi.org/10.1088/1757-899x/289/1/012020

  55. Flitney, B.: Alternatives to chrome for hydraulic actuators. Seal. Technol. 2007(10), 8–12 (2007). https://doi.org/10.1016/s1350-4789(07)70460-9

    Article  Google Scholar 

  56. Kuzmin, V., Gulyaev, I., Sergachev, D., Vashchenko, S., Kovalev, O., Kornienko, E., Palagushkin, B.: Supersonic DC plasma torch for deposition of high-density wear-resistant coatings. Mater. Today Proc. 19, 2152–2156 (2019). https://doi.org/10.1016/j.matpr.2019.07.230

    Article  Google Scholar 

  57. Walczak, P.: Analiza modelu matematycznego układu sterowania kierownicą turbiny wodnej małej mocy. Logistyka 6, 10823–10831 (2014)

    Google Scholar 

  58. Madej, M., Ozimina, D., Pająk, M.: Właściwości powłok węglowych uzyskiwanych w procesach fizycznego osadzania z fazy gazowej. Mechanik 88(4), 151–156 (2015). https://doi.org/10.17814/mechanik.2015.4.190

    Article  Google Scholar 

  59. Wang, H., Ma, G., Xu, B., Yong, Q., He, P.: Design and application of friction pair surface modification coating for remanufacturing. Friction 5(3), 351–360 (2017). https://doi.org/10.1007/s40544-017-0185-3

    Article  Google Scholar 

  60. Zhuk, Y.: Nanostructured CVD tungsten carbide coating on aircraft actuators and gearbox shafts reduces oil leakage and improves durability. J. Mater. Eng. Perform. 28(4), 1914–1923 (2019). https://doi.org/10.1007/s11665-019-03936-0

    Article  Google Scholar 

Download references

Acknowledgement

The first and second authors would like to thank for the financial support from the project co – financed by the European Union under the European Social Found as a part of the Operational Program: Knowledge, Education, Development, project No. POWR.03.02.00 – 00 – I042/16 – 00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justyna Skowrońska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skowrońska, J., Zaczyński, J., Kosucki, A., Stawiński, Ł. (2021). Modern Materials and Surface Modification Methods Used in the Manufacture of Hydraulic Actuators. In: Stryczek, J., Warzyńska, U. (eds) Advances in Hydraulic and Pneumatic Drives and Control 2020. NSHP 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-59509-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59509-8_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59508-1

  • Online ISBN: 978-3-030-59509-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics