Skip to main content

Equalising the Levels of Electromobility Implementation in Cities

  • Conference paper
  • First Online:
Research and the Future of Telematics (TST 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1289))

Included in the following conference series:

Abstract

Launching activities oriented towards electromobility development in urban areas is a difficult process, which is mainly due to the existence of barriers of infrastructural and social nature. This article provides a discussion concerning different levels of electromobility development and highlights the main efforts undertaken for the sake of identification of potential sites for vehicle charging stations. The research of transport accessibility was conducted in two cities characterised by diverse levels of maturity of electromobility implementation (The Hague and Budapest). The authors have proposed a method intended for acquisition of data concerning the real-life needs of the travelling population, assumed to function as a means of decision making support for local authorities with regard to installation of charging infrastructure. The method relies on the use of modern technologies, including a multimodal travel planner developed under the international project entitled Electric Travelling, implemented within the framework of the ERANET CoFund Electric Mobility Europe programme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Communication From The Commission To The European Parliament, The Council, The European Economic And Social Committee And The Committee Of The Regions: Clean Power for Transport: A European alternative fuels strategy, COM(2013). 17

    Google Scholar 

  2. White Paper on the Future of Europe, Reflections and scenarios for the EU27 by 2025, COM(2017) 2025

    Google Scholar 

  3. White Paper: Roadmap to a Single European Transport Area – Towards a competitive and resource efficient transport system. COM(2011) 144

    Google Scholar 

  4. Maibach, M., et al.: Handbook on Estimation of External Costs in the Transport Sector. Internalisation Measures and Policies for All external Cost of Transport (IMPACT). Delft (2008)

    Google Scholar 

  5. Becker, U.J., Becker, T., Gerlach, J.: The true costs of automobility: external costs of cars overview on existing estimates in EU-27. Dresden (2012)

    Google Scholar 

  6. Korzhenevych, A., et al.: Update of the handbook on external costs of transport. Final Report. Ricardo-AEA/R/ ED57769, Oxford, Didcot (2014)

    Google Scholar 

  7. Meyer, M.D.: Demand management as an element of transportation policy: using carrots and sticks to influence travel behavior. Transp. Res. Part A 33, 575–599 (1999)

    Google Scholar 

  8. Banister, D.: The sustainable mobility paradigm. Transp. Policy 15, 73–80 (2008)

    Article  Google Scholar 

  9. Sierpiński, G.: Model of incentives for changes of the modal split of traffic towards electric personal cars. In: Mikulski, J. (ed.) TST 2014. CCIS, vol. 471, pp. 450–460. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45317-9_48

    Chapter  Google Scholar 

  10. Mikulski, J.: Telematic technologies in transportation. In: Janecki, R., Sierpiński, G. (ed.): Contemporary transportation systems. Selected theoretical and practical problems. New Culture of mobility, pp. 131–143. Publishing House of the Silesian University of Technology. Monograph no. 324. Gliwice (2011)

    Google Scholar 

  11. Szymczak, M., Sienkiewicz-Małyjurek, K.: Information in the city traffic management system. the analysis of the use of information sources and the assessment in terms of their usefulness for city routes users. LogForum 7(2), 37–50 (2011)

    Google Scholar 

  12. van der Zwaan, B., Keppo, I., Johnsson, F.: How to decarbonizes the transport sector? Energy Policy 61, 562–573 (2013)

    Article  Google Scholar 

  13. Szołtysek, J.: Ekonomia współdzielenia a logistyka miasta – rozważania o związkach. Gospodarka Materiałowa i Logistyka 11, 2–9 (2016)

    Google Scholar 

  14. Taniguchi, E.: Concepts of city logistics for sustainable and liveable cities. Procedia Soc. Behav. Sci. 151, 310–317 (2014)

    Article  Google Scholar 

  15. Santos, G.: Road transport and CO2 emissions: what are the challenges? Transp. Policy 59, 71–74 (2017)

    Article  Google Scholar 

  16. Stanley, J.: Land use/transport integration: starting at the right place. Res. Transp. Econ. 48, 381–388 (2014)

    Article  Google Scholar 

  17. Cárdenas, O., Valencia, A., Montt, C.: Congestion minimization through sustainable traffic management: a micro-simulation approach. LogForum 14(1), 21–31 (2018)

    Article  Google Scholar 

  18. Dembińska, I., Jedliński, M., Marzantowicz, Ł.: Logistic support for a rescue operation in the aspect of minimizing the ecological footprint as an environmental requirement within sustainable development on the example of a natural disaster. LogForum 14(3), 355–370 (2018)

    Article  Google Scholar 

  19. Małecki, K.: The importance of automatic traffic lights time algorithms to reduce the negative impact of transport on the urban environment. Transp. Res. Procedia 16, 329–342 (2016)

    Article  Google Scholar 

  20. Macioszek, E.: The comparison of models for follow-up headway at roundabouts. In: Macioszek, E., Sierpiński, G. (eds.) TSTP 2017. LNNS, vol. 21, pp. 16–26. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64084-6_2

    Chapter  Google Scholar 

  21. Macioszek, E.: Analysis of significance of differences between psychotechnical parameters for drivers at the entries to one-lane and turbo roundabouts in Poland. In: Sierpiński, G. (ed.) Intelligent Transport Systems and Travel Behaviour. AISC, vol. 505, pp. 149–161. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-43991-4_13

    Chapter  Google Scholar 

  22. Galińska, B.: Intelligent decision making in transport. evaluation of transportation modes (types of vehicles) based on multiple criteria methodology. In: Sierpiński, G. (ed.) TSTP 2018. AISC, vol. 844, pp. 161–172. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99477-2_15

    Chapter  Google Scholar 

  23. Pijoan, A., et al.: Transport choice modeling for the evaluation of new transport policies. Sustainability 10, 1230 (2018)

    Article  Google Scholar 

  24. Kijewska, K., Iwan, S., Małecki, K.: Applying multi-criteria analysis of electrically powered vehicles implementation in urban freight transport. Procedia Comput. Sci. 159, 1558–1567 (2019)

    Article  Google Scholar 

  25. Grzelec, K., Birr, K.: Development of trolleybus public transport in Gdynia as part of a sustainable mobility strategy. Sci. J. Silesian Univ. Technol. Ser. Transp. 92, 53–63 (2016)

    Google Scholar 

  26. Krawiec, S., et al.: Urban public transport with the use of electric buses – development tendencies. Transp. Probl. 11(4), 127–137 (2016)

    Article  Google Scholar 

  27. Lejda, K., et al.: The future of public transport in light of solutions for sustainable transport development. Sci. J. Silesian Univ. Technol. Ser. Transp. 95, 97–108 (2017)

    Google Scholar 

  28. Our Common Future. Report of the World Commission on Environment and Development (1987)

    Google Scholar 

  29. Iwan, S., Małecki, K.: Data flows in an integrated urban freight transport telematic system. In: Mikulski, J. (ed.) TST 2012. CCIS, vol. 329, pp. 79–86. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34050-5_10

    Chapter  Google Scholar 

  30. Karoń, G., Mikulski, J.: Problems of systems engineering for ITS in large agglomeration – upper-silesian agglomeration in Poland. In: Mikulski, J. (ed.) TST 2014. CCIS, vol. 471, pp. 242–251. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45317-9_26

    Chapter  Google Scholar 

  31. Karoń, G., Mikulski, J.: Forecasts for Technical Variants of ITS Projects – Example of Upper-Silesian Conurbation. In: Mikulski, J. (ed.) TST 2013. CCIS, vol. 395, pp. 67–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41647-7_9

    Chapter  Google Scholar 

  32. Jacyna, M., et al.: Selected aspects of the model of proecological transport system. J. KONES Powertrain Transp. 20, 193–202 (2013)

    Article  Google Scholar 

  33. Macioszek, E.: First and last mile delivery – problems and issues. In: Sierpiński, G. (ed.) TSTP 2017. AISC, vol. 631, pp. 147–154. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62316-0_12

    Chapter  Google Scholar 

  34. Kauf, S.: City logistics - a strategic element of sustainable urban development. Transp. Res. Procedia 16, 158–164 (2016)

    Article  Google Scholar 

  35. Celiński, I., Sierpiński, G., Staniek, M.: Sustainable development of the transport system through rationalization of transport tasks using a specialised travel planner. In: Dell’Acqua, G., Wegman, F. (eds.) Transport Infrastructure and Systems, pp. 1071–1079. CRC Press, Taylor & Francis Group, London (2017)

    Google Scholar 

  36. Esztergár-Kiss, D., Csiszár, C.: Evaluation of multimodal journey planners and definition of service levels. Int. J. Intell. Transp. Syst. Res. 13, 154–165 (2015). https://doi.org/10.1007/s13177-014-0093-0

    Article  Google Scholar 

  37. Lewczuk, K., et al.: Vehicle routing in urban area – environmental and technological determinants. WIT Trans. Built Environ. 130, 373–384 (2013)

    Article  Google Scholar 

  38. Borkowski, P.: Towards an optimal multimodal travel planner—lessons from the European experience. In: Sierpiński, G. (ed.) Intelligent Transport Systems and Travel Behaviour. AISC, vol. 505, pp. 163–174. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-43991-4_14

    Chapter  Google Scholar 

  39. Sierpiński, G.: Using ICT applications to support sustainable development and tackle the barriers related to extensive introduction of electric cars into transport systems – a case study based on the green travelling planner tool. In: Suchanek, M. (ed.) New Research Trends in Transport Sustainability and Innovation: TranSopot 2017 Conference. Springer Proceedings in Business and Economics, pp. 62–72. Springer (2018). https://doi.org/10.1007/978-3-319-74461-2_6

  40. Electric travelling - platform to support the implementation of electromobility in Smart Cities based on ICT applications – Project proposal under EMEurope programme (2016)

    Google Scholar 

  41. OpenStreetMap service. https://www.openstreetmap.org/. Accessed 20 Jan 2020

  42. Overpass service. http://overpass-turbo.eu/. Accessed 20 Jan 2020

  43. EV-Charging Stations in Europe. https://ev-charging.com/. Accessed 20 Jan 2020

  44. PlugShare - EV Charging Station Map. https://www.plugshare.com/. Accessed 20Jan 2020

  45. The Hague Online website. The Hague leading in charging points for electric cars. https://www.thehagueonline.com/news/2019/08/29/the-hague-leading-in-charging-points-for-electric-cars. Accessed 20 Jan 2020

  46. Vision on the charging infrastructure for electric transport looking ahead to 2035. The Ministry of Economic Affairs, The Hague (2017)

    Google Scholar 

  47. European Alternative Fuels Observatory. https://www.eafo.eu/. Accessed 20 Jan 2020

  48. Licznik elektromobilności. Polskie Stowarzyszenie Paliw Alternatywnych (PSPA) oraz Polski Związek Przemysłu Motoryzacyjnego (PZPM). http://pspa.com.pl/. Accessed 20 Jan 2020

  49. Ustawa z dnia 11 stycznia 2018 r. o elektromobilności i paliwach alternatywnych – Dz. U. 2018 poz. 317 [in Polish: Act of 11 January 2018 on electromobility and alternative fuels – Dz. U. (Journal of Laws) 2019, item 317]

    Google Scholar 

  50. Ministry of Energy. National Policy Framework for Alternative Fuel Infrastructure, Warsaw (2017)

    Google Scholar 

  51. Ministry of Energy. Electromobility Development Plan in Poland. Energy for the Future, Warsaw (2018)

    Google Scholar 

  52. Jochema, P., Szimba, E., Reuter-Oppermann, M.: How many fast-charging stations do we need along European highways? Transp. Res. Part D 73, 120–129 (2019)

    Article  Google Scholar 

  53. Csonka, B., Csiszár, C.: Determination of charging infrastructure location for electric vehicles. Transp. Res. Procedia 27, 768–775 (2017)

    Article  Google Scholar 

  54. He, Y., Kockelman, K.M., Perrine, K.A.: Optimal locations of U.S. fast charging stations for long-distance trip completion by battery electric vehicles. J. Cleaner Prod. 214, 452–461 (2019)

    Article  Google Scholar 

  55. Csiszár, C., et al.: Urban public charging station locating method for electric vehicles based on land use approach. J. Transp. Geogr. 74, 173–180 (2019)

    Article  Google Scholar 

  56. Sierpiński, G., Staniek, M., Macioszek, E., Standardisation of travel planners and use of a return channel. In: Proceedings of the 2nd World Congress on Civil, Structural, and Environmental Engineering, Barcelona, Paper No. ICTE 121 (2017)

    Google Scholar 

  57. Ocicka, B., Wieteska, G.: Sharing economy in logistics and supply chain management. LogForum 13(2), 183–193 (2017)

    Article  Google Scholar 

  58. Sierpiński, G., Turoń, K., Pypno, C.: Urban transport integration using automated garages in park and ride and car-sharing systems – preliminary study for the upper silesian conurbation. In: Sierpiński, G. (ed.) TSTP 2018. AISC, vol. 844, pp. 218–228. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99477-2_20

    Chapter  Google Scholar 

  59. Global EV Outlook 2019. Scaling-up the transition to electric mobility. International Energy Agency (2019)

    Google Scholar 

Download references

Acknowledgements

The present research has been financed from the means of the National Centre for Research and Development as a part of the international project within the scope of ERA-NET CoFund Electric Mobility Europe Programme “Electric travelling - platform to support the implementation of electromobility in Smart Cities based on ICT applications”.

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Sierpiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sierpiński, G., Macioszek, E. (2020). Equalising the Levels of Electromobility Implementation in Cities. In: Mikulski, J. (eds) Research and the Future of Telematics. TST 2020. Communications in Computer and Information Science, vol 1289. Springer, Cham. https://doi.org/10.1007/978-3-030-59270-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59270-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59269-1

  • Online ISBN: 978-3-030-59270-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics