Skip to main content

New Trends in Cryptography: Quantum, Blockchain, Lightweight, Chaotic, and DNA Cryptography

  • Chapter
  • First Online:
New Frontiers in Cryptography

Abstract

DNA cryptography is a promising and rapid emerging field in data security. DNA cryptography may bring forward a new hope for unbreakable algorithms. DNA cryptology combines cryptology and modern biotechnology. To encrypt using DNA, sender generates a DNA encoding table, and receiver generates another table through the same encoding technique and sends a clue to the sender to be able to generate it locally. The plaintext to be encoded is divided into two halves equally. If the plaintext is not even, we insert random padding. One half of the plaintext is converted into DNA sequence using sender-based table, and the other half of the plaintext is converted into DNA sequence using receiver-based table. DNA cryptography is a bio-inspired novel technique used for securing end to end communication, where DNA is used as an information carrier. DNA cryptography is assumed to be unbreakable algorithm [23–26]. The advantages of DNA computing over traditional computing are as follows [27]:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Bogdanov et al., PRESENT: An ultra-lightweight block cipher, in Cryptographic Hardware and Embedded Systems – CHES, (2007)

    Google Scholar 

  2. J. Borghoff, L.R. Knudsen, G. Leander, S.S. Thomsen, Cryptanalysis of PRESENT-like ciphers with secret S-boxes, in International Workshop on Fast Software Encryption, (Springer, Berlin, Heidelberg, 2011), pp. 270–289

    Chapter  Google Scholar 

  3. J. Pospiil, M. Novotný, Evaluating cryptanalytical strength of lightweight cipher present on reconfigurable hardware, in Digital System Design (DSD), 2012 15th Euromicro Conference, (IEEE, 2012), pp. 560–567

    Google Scholar 

  4. S.S. Rekha, P. Saravanan, Low cost circuit level implementation of PRESENT-80 S-BOX, in International Symposium on VLSI Design and Test, (Springer, Singapore, 2017), pp. 354–362

    Chapter  Google Scholar 

  5. C.A. Lara-Nino, M. Morales-Sandoval, A. Diaz-Perez, Novel FPGA-based low-cost hardware architecture for the PRESENT block cipher, in 2016 Euromicro Conference on Digital System Design (DSD), (IEEE, 2016), pp. 646–650

    Google Scholar 

  6. D. Bellizia, G. Scotti, A. Trifiletti, Implementation of the present-80 block cipher and analysis of its vulnerability to side channel attacks exploiting static power, in Mixed Design of Integrated Circuits and Systems, 2016 MIXDES-23rd International Conference, (IEEE, 2016), pp. 211–216

    Google Scholar 

  7. C. Andrés, M.S. Miguel, D.P. Arturo, An evaluation of AES and present ciphers for lightweight cryptography on smartphones, in Electronics, Communications and Computers (CONIELECOMP), 2016 International Conference, (IEEE, 2016), pp. 87–93

    Google Scholar 

  8. J.G. Pandey, T. Goel, A. Karmakar, An efficient VLSI architecture for PRESENT block cipher and its FPGA implementation, in International Symposium on VLSI Design and Test, (Springer, Singapore, 2017), pp. 270–278

    Chapter  Google Scholar 

  9. C.A. Lara-Nino, A. Diaz-Perez, M. Morales-Sandoval, Lightweight hardware architectures for the PRESENT cipher in FPGA. IEEE Trans. Circ. Syst. Reg. Papers 64(9), 2544–2555 (2017)

    Article  Google Scholar 

  10. J.J. Tay, M.L.D. Wong, M.M. Wong, C. Zhang, I. Hijazin, Compact FPGA implementation of PRESENT with Boolean S-Box, in Quality Electronic Design (ASQED), 2015 6th Asia Symposium, (IEEE, 2015), pp. 144–148

    Google Scholar 

  11. K. Salah, IP Cores Design from Specifications to Production: Modeling, Verification, Optimization, and Protection (Springer, 2016)

    Google Scholar 

  12. A.Z. El Hamid, A. El-Henawy, H. El-Shenawy, Performance evaluation of chaotic interleaving with FFT and DWT OFDM, in 29th National Radio Science Conference (NRSC), (IEEE, 2012)

    Google Scholar 

  13. A.M. El-Bendary, A. Abou El-Azm, An efficient chaotic interleaver for image transmission over IEEE 802.15. 4 Zigbee network. J. Telecommun. Inform. Tech. (2011)

    Google Scholar 

  14. E.S. Hassan, S.E. El-Khamy, M. Dessouky, A chaotic interleaving scheme for the continuous phase modulation based single-carrier frequency-domain equalization system. Wirel. Pers. Commun. 62(1), 183–199, Springer, (2012)

    Article  Google Scholar 

  15. M. Usman, I. Ahmedy, M. Imran Aslamy, S. Khan, U.A. Shahy, SIT: A lightweight encryption algorithm for secure internet of things. Int. J. Adv. Comput. Sci. Appl. 8(1) (2017)

    Google Scholar 

  16. https://coincentral.com/blockchain-cryptography-quantum-machines/

  17. J.B. Altepeter, A Tale of Two Qubits: How Quantum Computers Work. Ars Technica (Online Magazine), January 18, 2010

    Google Scholar 

  18. A. Bogdanov et al., PRESENT: An ultra-lightweight block cipher, in Cryptographic Hardware and Embedded Systems – CHES 2007 Lecture Notes in Computer Science, (Springer, 2007), pp. 450–466

    Google Scholar 

  19. D. Hong et al., HIGHT: A new block cipher suitable for low resource device, in Cryptographic Hardware and Embedded Systems – CHES 2006 Lecture Notes in Computer Science, (2006), pp. 46–59

    Chapter  Google Scholar 

  20. S. Kolay, D. Mukhopadhyay, Khudra: A new lightweight block cipher for FPGAs, in SPACE, Vol 8804 of LNCS, (Springer, 2014), pp. 126–145

    Google Scholar 

  21. M. Usman, I. Ahmed, M. Imran, S. Khan, U. Ali, SIT: A lightweight encryption algorithm for secure internet of things. Int. J. Adv. Comput. Sci. Appl. 8(1) (2017)

    Google Scholar 

  22. S. Koteshwara, A. Das, Comparative study of authenticated encryption targeting lightweight IoT applications. IEEE Design Test 34(4), 26–33 (2017)

    Article  Google Scholar 

  23. B.B. Raj, J. Frank, T. Mahalakshmi, Secure data transfer through DNA cryptography using symmetric algorithm. Int. J. Comput. Appl. 133(2), 0975–8887 (2016)

    Google Scholar 

  24. A. Roy, A. Nath, DNA encryption algorithms: Scope and challenges in symmetric key cryptography. Int. J. Innov. Res. Adv. Eng., ISSN: 2349-2763, 3(11) (2016)

    Google Scholar 

  25. W. Stallings, Cryptography and Network Security (3rd, Prentice Hall International, 2003)

    Google Scholar 

  26. N.S. Kolte, K.V. Kulhalli, S.C. Shinde, DNA cryptography using index-based symmetric DNA encryption algorithm. Int. J. Eng. Res. Tech., ISSN 0974-3154, 10(1) (2017)

    Google Scholar 

  27. M. Najaftorkaman, N.S. Kazazi, A method to encrypt information with DNA-based cryptography. Int. J. Cyber Sec. Digital Foren., The Society of Digital Information and Wireless Communications, (2015)

    Google Scholar 

  28. Z. Kirsch, Quantum Computing: The Risk to Existing Encryption Methods, Ph.D. dissertation, Tufts University, Massachusetts, 2015

    Google Scholar 

  29. L.S. Bishop, S. Bravyi, A. Cross, J.M. Gambetta, J. Smolin, Quantum volume, Technical report, 2017, Tech. Rep., 2017

    Google Scholar 

  30. D. Bernstein, E. Dahmen, Buch, Introduction to post-quantum, in Cryptography, (Springer-Verlag, Berlin Heidelberg, 2010)

    Google Scholar 

  31. W. Buchanan, A. Woodward, Will quantum computers be the end of public key encryption? J. Cyber Sec. Tech. 1(1), 1–22 (2016)

    Google Scholar 

  32. A. Hencic, C. Gourieroux, Noncausal autoregressive model in application to Bitcoin/USD exchange rate, in Econometrics of Risk, (Springer, Berlin, 2014), pp. 17–40

    Google Scholar 

  33. E.S. Babu, M.H.M.K. Prasad, C.N. Raju, Inspired pseudo biotic DNA based cryptographic mechanism against adaptive cryptographic attacks. Int. J. Network Sec. 18(2), 291–303 (2016)

    Google Scholar 

  34. M.S.S. Basha, I.A. Emerson, R. Kannadasan, Survey on molecular cryptographic network DNA (MCND) using big data, in Procedia Computer Science of 2nd International Symposium on Big Data and Cloud Computing (ISBCC’15), vol. 50, (2015), pp. 3–9

    Google Scholar 

  35. M. Bhavithara, A.P. Bhrintha, A. Kamaraj, DNA-based encryption and decryption using FPGA. Int. J. Curr. Res. Mod. Edu. (IJCRME’16), 89–94 (2016)

    Google Scholar 

  36. N.S. Kazazi, M.R.N. Torkaman, A method to encrypt information with DNA-based cryptography. Int. J. Cyber Sec. Dig. Foren. (IJCSDF’15) 4(3), 417–426 (2015)

    Article  Google Scholar 

  37. T. Mahalaxmi, B.B. Raj, J.F. Vijay, Secure data transfer through DNA cryptography using a symmetric algorithm. Int. J. Comput. Appl. 133(2), 19–23 (2016)

    Google Scholar 

  38. Y. Hashimoto, Multivariate public key cryptosystems, in Mathematical Modelling for Next-Generation Cryptography, (Springer, 2018), pp. 17–42

    Google Scholar 

  39. P.W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (SFCS’94), (IEEE, 1994), pp. 124–134

    Google Scholar 

  40. A. Satoh, S. Morioka, Hardware-focused performance comparison for the standard block ciphers AES, camellia, and triple DES. Lect. Notes Comput. Sci. Inform. Sec., Springer,, 252–266 (2003)

    Google Scholar 

  41. K.S. Mohamed, Neuromorphic Computing and Beyond: Parallel, Approximation, Near Memory, and Quantum (Springer Nature, 2020)

    Google Scholar 

  42. K. Salah, Real time embedded system IPs protection using chaotic maps, in IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), (IEEE, 2017), p. 2017

    Google Scholar 

  43. https://www.guru99.com/blockchain-tutorial.html

  44. X. Wang, J. Zhang, E. Schooler, M. Ion, Performance evaluation of attribute-based E encrypt ion: Toward data privacy in the IoT. IEEE Int. Conf. Commun. (ICC), 725–730 (2014)

    Google Scholar 

  45. M. Yagisawa, Key distribution system and attribute-based encrypt ion on non-commutative ring. Cryptol. ePrint Arch., Report 2012/24, (2012)

    Google Scholar 

  46. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, Y. Seurin, C. Vikkelsoe, PRESENT: An ultra-lightweight block cipher, in Proceeding of Cryptographic Hardware and Embedded Systems—CHES 2007, (Springer), pp. 450–466

    Google Scholar 

  47. A. Singh, Centralized key distribution on quantum cryptography. Int. J. Comput. Sci. Mob. Comput. (IJCSMC) 6 (2017)

    Google Scholar 

  48. Y. Wang, K. She, A practical quantum public key encryption model. Int. Conf. Inform. Manag. (2017)

    Google Scholar 

  49. Stevo Jacimovski “on quantum cryptography” 2019

    Google Scholar 

  50. H.Q. Wang, T. Wu, Cryptography in Blockchain. J. Nanjing Univ. Posts Telecommun. 37, 61–67 (2017)

    Google Scholar 

  51. R.H. Weber, Internet of Things—New security and privacy challenges. Comp. Law Sec. Rev. 26(1), 23–30 (2010)

    Article  MathSciNet  Google Scholar 

  52. A. Ukil, J. Sen, S. Koilakonda, Embedded security for Internet of Things, in Proceedings of 2nd National Conference on Emerging Trends and Applications in Computer Science (NCETACS), (2011), pp. 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed, K.S. (2020). New Trends in Cryptography: Quantum, Blockchain, Lightweight, Chaotic, and DNA Cryptography. In: New Frontiers in Cryptography. Springer, Cham. https://doi.org/10.1007/978-3-030-58996-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58996-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58995-0

  • Online ISBN: 978-3-030-58996-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics