Skip to main content

Mathematical Modelling and Identification of a Quadrotor

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Motivated by the important growth of VTOL vehicles research such as quadrotors and to a small extent autonomous flight, a quadrotor dynamical model is presented in this work. The purpose of this study is to get a better understanding of its flight dynamics. It is an underactuated system. So, a simplified and clear model is needed to implement controllers on these kind of unmanned aerial systems. In addition, a computational tool is used for validation purposes. For future works embedded or intelligent control systems can be developed to control them. Gyroscopic and some aerodynamics effects are neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bresciani, T.: Modelling, identification and control of a quadrotor helicopter. MSc theses (2008)

    Google Scholar 

  2. Cárdenas Ruiz, C.A.: Performance study of the flight control and path planning for a UAV type Quadrotor. Ingeniería Mecatrónica (2018)

    Google Scholar 

  3. Collazos, C., et al.: State estimation of a dehydration process by interval analysis. In: Figueroa-García, J.C., López-Santana, E.R., Rodriguez-Molano, J.I. (eds.) WEA 2018. CCIS, vol. 915, pp. 66–77. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00350-0_6

    Chapter  Google Scholar 

  4. Cook, M.V.: Flight Dynamics Prıncıples. Elsevıer (2007)

    Google Scholar 

  5. Cork, L.R.: Aircraft dynamic navigation for unmanned aerial vehicles. Ph.D. thesis. Queensland University of Technology (2014)

    Google Scholar 

  6. Cowling, I.: Towards autonomy of a Quadrotor UAV (2008)

    Google Scholar 

  7. Habib, M.K., Abdelaal, W.G.A., Saad, M.S., et al.: Dynamic modeling and control of a Quadrotor using linear and nonlinear approaches (2014)

    Google Scholar 

  8. Huang, H., et al.: Aerodynamics and control of autonomous Quadrotor helicopters in aggressive maneuvering. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3277–3282. IEEE (2009)

    Google Scholar 

  9. Ireland, M.L.: Investigations in multi-resolution modelling of the Quadrotor micro air vehicle. Ph.D. thesis. University of Glasgow (2014)

    Google Scholar 

  10. Jiménez-Cabas, J., et al.: Robust control of an evaporator through algebraic Riccati equations and d-K iteration. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11620, pp. 731–742. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24296-1_58

    Chapter  Google Scholar 

  11. Leishman, G.J.: Principles of Helicopter Aerodynamics with CD Extra. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  12. Lugo-Cárdenas, I., et al.: Dubins path generation for a fixed wing UAV. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 339–346. IEEE (2014)

    Google Scholar 

  13. Malang, Y.: Design and Control of a Vertical Takeo and Landing Fixed-wing Unmanned Aerial Vehicle. Ph.D. thesis (2016)

    Google Scholar 

  14. Mulder, S.: Flight Dynamics (2007)

    Google Scholar 

  15. Swartling, J.O.: Circumnavigation with a group of Quadrotor helicopters (2014)

    Google Scholar 

  16. Pharpatara, P.: Trajectory planning for aerial vehicles with constraints. Theses. Université Paris-Saclay; Université d’Evry-Val-d’Essonne, September 2015. https://tel.archives-ouvertes.fr/tel-01206423

  17. Poyi, G.T.: A novel approach to the control of quad-rotor helicopters using fuzzy-neural networks (2014)

    Google Scholar 

  18. Sabatino, F.: Quadrotor control: modeling, nonlinear control design, and simulation (2015)

    Google Scholar 

  19. Voos, H.: Nonlinear control of a Quadrotor micro-UAV using feedback linearization. In: International Conference on Mechatronics, ICM 2009, pp. 1–6. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César A. Cárdenas R. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cárdenas R., C.A. et al. (2020). Mathematical Modelling and Identification of a Quadrotor. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12249. Springer, Cham. https://doi.org/10.1007/978-3-030-58799-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58799-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58798-7

  • Online ISBN: 978-3-030-58799-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics