Skip to main content

Learning Flow-Based Feature Warping for Face Frontalization with Illumination Inconsistent Supervision

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12357))

Included in the following conference series:

Abstract

Despite recent advances in deep learning-based face frontalization methods, photo-realistic and illumination preserving frontal face synthesis is still challenging due to large pose and illumination discrepancy during training. We propose a novel Flow-based Feature Warping Model (FFWM) which can learn to synthesize photo-realistic and illumination preserving frontal images with illumination inconsistent supervision. Specifically, an Illumination Preserving Module (IPM) is proposed to learn illumination preserving image synthesis from illumination inconsistent image pairs. IPM includes two pathways which collaborate to ensure the synthesized frontal images are illumination preserving and with fine details. Moreover, a Warp Attention Module (WAM) is introduced to reduce the pose discrepancy in the feature level, and hence to synthesize frontal images more effectively and preserve more details of profile images. The attention mechanism in WAM helps reduce the artifacts caused by the displacements between the profile and the frontal images. Quantitative and qualitative experimental results show that our FFWM can synthesize photo-realistic and illumination preserving frontal images and performs favorably against the state-of-the-art results. Our code is available at https://github.com/csyxwei/FFWM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, J., Hu, Y., Zhang, H., He, R., Sun, Z.: Learning a high fidelity pose invariant model for high-resolution face frontalization. In: Advances in Neural Information Processing Systems, pp. 2867–2877 (2018)

    Google Scholar 

  2. Deng, J., Cheng, S., Xue, N., Zhou, Y., Zafeiriou, S.: UV-GAN: adversarial facial UV map completion for pose-invariant face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7093–7102 (2018)

    Google Scholar 

  3. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

    Google Scholar 

  4. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. Image Vis. Comput. 28(5), 807–813 (2010)

    Article  Google Scholar 

  5. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-CELEB-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  6. Hassner, T., Harel, S., Paz, E., Enbar, R.: Effective face frontalization in unconstrained images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4295–4304 (2015)

    Google Scholar 

  7. He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_1

    Chapter  Google Scholar 

  8. Hu, Y., Wu, X., Yu, B., He, R., Sun, Z.: Pose-guided photorealistic face rotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8398–8406 (2018)

    Google Scholar 

  9. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report 07–49, University of Massachusetts, Amherst, October 2007

    Google Scholar 

  10. Huang, R., Zhang, S., Li, T., He, R.: Beyond face rotation: global and local perception GAN for photorealistic and identity preserving frontal view synthesis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2439–2448 (2017)

    Google Scholar 

  11. Hui, T.W., Tang, X., Change Loy, C.: LiteFlowNet: a lightweight convolutional neural network for optical flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8981–8989 (2018)

    Google Scholar 

  12. Hur, J., Roth, S.: Iterative residual refinement for joint optical flow and occlusion estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5754–5763 (2019)

    Google Scholar 

  13. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2462–2470 (2017)

    Google Scholar 

  14. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  15. Li, X., Liu, M., Ye, Y., Zuo, W., Lin, L., Yang, R.: Learning warped guidance for blind face restoration. In: Proceedings of the European Conference on Computer Vision, pp. 272–289 (2018)

    Google Scholar 

  16. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition (2015)

    Google Scholar 

  17. Qian, Y., Deng, W., Hu, J.: Unsupervised face normalization with extreme pose and expression in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9851–9858 (2019)

    Google Scholar 

  18. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4161–4170 (2017)

    Google Scholar 

  19. Ren, Y., Yu, X., Chen, J., Li, T.H., Li, G.: Deep image spatial transformation for person image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7690–7699 (2020)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  22. Sagonas, C., Panagakis, Y., Zafeiriou, S., Pantic, M.: Robust statistical face frontalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3871–3879 (2015)

    Google Scholar 

  23. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  24. Shocher, A., Bagon, S., Isola, P., Irani, M.: InGAN: capturing and remapping the “DNA” of a natural image. arXiv preprint arXiv:1812.00231 (2018)

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  26. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-NET: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)

    Google Scholar 

  27. Tian, Y., Peng, X., Zhao, L., Zhang, S., Metaxas, D.N.: CR-GAN: learning complete representations for multi-view generation. arXiv preprint arXiv:1806.11191 (2018)

  28. Tran, L., Yin, X., Liu, X.: Disentangled representation learning GAN for pose-invariant face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1415–1424 (2017)

    Google Scholar 

  29. Truong, P., Danelljan, M., Timofte, R.: GLU-NeT: global-local universal network for dense flow and correspondences. arXiv preprint arXiv:1912.05524 (2019)

  30. Wu, X., He, R., Sun, Z., Tan, T.: A light CNN for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 13(11), 2884–2896 (2018)

    Article  Google Scholar 

  31. Yin, X., Yu, X., Sohn, K., Liu, X., Chandraker, M.: Towards large-pose face frontalization in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3990–3999 (2017)

    Google Scholar 

  32. Yin, Y., Jiang, S., Robinson, J.P., Fu, Y.: Dual-attention GAN for large-pose face frontalization. arXiv preprint arXiv:2002.07227 (2020)

  33. Zhang, Z., Chen, X., Wang, B., Hu, G., Zuo, W., Hancock, E.R.: Face frontalization using an appearance-flow-based convolutional neural network. IEEE Trans. Image Process. 28(5), 2187–2199 (2018)

    Article  MathSciNet  Google Scholar 

  34. Zhao, J., et al.: Towards pose invariant face recognition in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2207–2216 (2018)

    Google Scholar 

  35. Zhao, J., et al.: 3D-aided deep pose-invariant face recognition. In: IJCAI, vol. 2, p. 11 (2018)

    Google Scholar 

  36. Zhu, X., Lei, Z., Yan, J., Yi, D., Li, S.Z.: High-fidelity pose and expression normalization for face recognition in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 787–796 (2015)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 61671182 and U19A2073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangmeng Zuo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 755 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, Y., Liu, M., Wang, H., Zhu, R., Hu, G., Zuo, W. (2020). Learning Flow-Based Feature Warping for Face Frontalization with Illumination Inconsistent Supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12357. Springer, Cham. https://doi.org/10.1007/978-3-030-58610-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58610-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58609-6

  • Online ISBN: 978-3-030-58610-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics