Skip to main content

Momentum Batch Normalization for Deep Learning with Small Batch Size

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12357))

Included in the following conference series:

Abstract

Normalization layers play an important role in deep network training. As one of the most popular normalization techniques, batch normalization (BN) has shown its effectiveness in accelerating the model training speed and improving model generalization capability. The success of BN has been explained from different views, such as reducing internal covariate shift, allowing the use of large learning rate, smoothing optimization landscape, etc. To make a deeper understanding of BN, in this work we prove that BN actually introduces a certain level of noise into the sample mean and variance during the training process, while the noise level depends only on the batch size. Such a noise generation mechanism of BN regularizes the training process, and we present an explicit regularizer formulation of BN. Since the regularization strength of BN is determined by the batch size, a small batch size may cause the under-fitting problem, resulting in a less effective model. To reduce the dependency of BN on batch size, we propose a momentum BN (MBN) scheme by averaging the mean and variance of current mini-batch with the historical means and variances. With a dynamic momentum parameter, we can automatically control the noise level in the training process. As a result, MBN works very well even when the batch size is very small (e.g., 2), which is hard to achieve by traditional BN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amodei, D., et al.: Deep speech 2: end-to-end speech recognition in English and Mandarin. In: International Conference on Machine Learning, pp. 173–182 (2016)

    Google Scholar 

  2. An, G.: The effects of adding noise during backpropagation training on a generalization performance. Neural Comput. 8(3), 643–674 (1996)

    Article  Google Scholar 

  3. Arpit, D., Zhou, Y., Kota, B.U., Govindaraju, V.: Normalization propagation: a parametric technique for removing internal covariate shift in deep networks. arXiv preprint arXiv:1603.01431 (2016)

  4. Bishop, C.M.: Training with noise is equivalent to tikhonov regularization. Neural Comput. 7(1), 108–116 (1995)

    Article  Google Scholar 

  5. Bjorck, J., Gomes, C., Selman, B., Weinberger, K.Q.: Understanding batch normalization, pp. 7694–7705 (2018)

    Google Scholar 

  6. Bottou, L.: Stochastic gradient learning in neural networks. Proc. Neuro-Nımes 91(8), 12 (1991)

    Google Scholar 

  7. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT 2010, pp. 177–186. Springer (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

  8. Cho, M., Lee, J.: Riemannian approach to batch normalization. In: Advances in Neural Information Processing Systems, pp. 5225–5235 (2017)

    Google Scholar 

  9. Crocker, L., Algina, J.: Introduction to classical and modern test theory. ERIC (1986)

    Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  11. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(Jul), 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Guo, Y., Wu, Q., Deng, C., Chen, J., Tan, M.: Double forward propagation for memorized batch normalization. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  16. Huang, L., Yang, D., Lang, B., Deng, J.: Decorrelated batch normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 791–800 (2018)

    Google Scholar 

  17. Huang, L., Zhou, Y., Zhu, F., Liu, L., Shao, L.: Iterative normalization: beyond standardization towards efficient whitening. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4874–4883 (2019)

    Google Scholar 

  18. Ioffe, S.: Batch renormalization: towards reducing minibatch dependence in batch-normalized models. In: Advances in Neural Information Processing Systems, pp. 1945–1953 (2017)

    Google Scholar 

  19. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  21. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  22. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_3

    Chapter  Google Scholar 

  23. Lei Ba, J., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  24. Lenth, R.V.: Cumulative distribution function of the non-central T distribution. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 38(1), 185–189 (1989)

    Google Scholar 

  25. Luo, P., Peng, Z., Ren, J., Zhang, R.: Do normalization layers in a deep convnet really need to be distinct? arXiv preprint arXiv:1811.07727 (2018)

  26. Luo, P., Ren, J., Peng, Z.: Differentiable learning-to-normalize via switchable normalization. arXiv preprint arXiv:1806.10779 (2018)

  27. Luo, P., Wang, X., Shao, W., Peng, Z.: Towards understanding regularization in batch normalization (2018)

    Google Scholar 

  28. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

  29. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Article  Google Scholar 

  30. Ren, M., Liao, R., Urtasun, R., Sinz, F.H., Zemel, R.S.: Normalizing the normalizers: comparing and extending network normalization schemes. arXiv preprint arXiv:1611.04520 (2016)

  31. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  32. Salimans, T., Kingma, D.P.: Weight normalization: a simple reparameterization to accelerate training of deep neural networks. In: Advances in Neural Information Processing Systems, pp. 901–909 (2016)

    Google Scholar 

  33. Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normalization help optimization? (no, it is not about internal covariate shift), pp. 2483–2493 (2018)

    Google Scholar 

  34. Shao, W., et al.: SSN: learning sparse switchable normalization via sparsestmax. arXiv preprint arXiv:1903.03793 (2019)

  35. Shekhovtsov, A., Flach, B.: Stochastic normalizations as bayesian learning. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11362, pp. 463–479. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20890-5_30

    Chapter  Google Scholar 

  36. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484 (2016)

    Article  Google Scholar 

  37. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp. 1139–1147 (2013)

    Google Scholar 

  38. Teye, M., Azizpour, H., Smith, K.: Bayesian uncertainty estimation for batch normalized deep networks. arXiv preprint arXiv:1802.06455 (2018)

  39. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  40. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, pp. 3630–3638 (2016)

    Google Scholar 

  41. Wang, G., Peng, J., Luo, P., Wang, X., Lin, L.: Batch kalman normalization: towards training deep neural networks with micro-batches. arXiv preprint arXiv:1802.03133 (2018)

  42. Wu, S., et al.: L1-norm batch normalization for efficient training of deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 30(7), 2043–2051 (2018)

    Article  Google Scholar 

  43. Wu, Y., He, K.: Group normalization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  44. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530 (2016)

  45. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 188 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yong, H., Huang, J., Meng, D., Hua, X., Zhang, L. (2020). Momentum Batch Normalization for Deep Learning with Small Batch Size. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12357. Springer, Cham. https://doi.org/10.1007/978-3-030-58610-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58610-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58609-6

  • Online ISBN: 978-3-030-58610-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics