Skip to main content

An End-to-End OCR Text Re-organization Sequence Learning for Rich-Text Detail Image Comprehension

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12370))

Included in the following conference series:

Abstract

Nowadays the description of detailed images helps users know more about the commodities. With the help of OCR technology, the description text can be detected and recognized as auxiliary information to remove the visually impaired users’ comprehension barriers. However, for lack of proper logical structure among these OCR text blocks, it is challenging to comprehend the detailed images accurately. To tackle the above problems, we propose a novel end-to-end OCR text reorganizing model. Specifically, we create a Graph Neural Network with an attention map to encode the text blocks with visual layout features, with which an attention-based sequence decoder inspired by the Pointer Network and a Sinkhorn global optimization will reorder the OCR text into a proper sequence. Experimental results illustrate that our model outperforms the other baselines, and the real experiment of the blind users’ experience shows that our model improves their comprehension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baek, Y., Lee, B., Han, D., Yun, S., Lee, H.: Character region awareness for text detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9365–9374 (2019)

    Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  3. Binmakhashen, G.M., Mahmoud, S.A.: Document layout analysis: a comprehensive survey. ACM Comput. Surveys (CSUR) 52(6), 1–36 (2019)

    Article  Google Scholar 

  4. Bissacco, A., Cummins, M., Netzer, Y., Neven, H.: PhotoOCR: reading text in uncontrolled conditions. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 785–792 (2013)

    Google Scholar 

  5. Busta, M., Neumann, L., Matas, J.: Deep TextSpotter: an end-to-end trainable scene text localization and recognition framework. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2204–2212 (2017)

    Google Scholar 

  6. Chakraborty, A., Paranjape, B., Kakarla, S., Ganguly, N.: Stop clickbait: detecting and preventing clickbaits in online news media. In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 9–16. IEEE (2016)

    Google Scholar 

  7. Cheng, J., Lapata, M.: Neural summarization by extracting sentences and words. arXiv preprint arXiv:1603.07252 (2016)

  8. Dai, Y., et al.: Fused text segmentation networks for multi-oriented scene text detection. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3604–3609. IEEE (2018)

    Google Scholar 

  9. Eriguchi, A., Hashimoto, K., Tsuruoka, Y.: Tree-to-sequence attentional neural machine translation. arXiv preprint arXiv:1603.06075 (2016)

  10. Filippova, K., Alfonseca, E., Colmenares, C.A., Kaiser, L., Vinyals, O.: Sentence compression by deletion with LSTMs. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 360–368 (2015)

    Google Scholar 

  11. Freeman, H., Garder, L.: Apictorial Jigsaw puzzles: the computer solution of a problem in pattern recognition. IEEE Trans. Electron. Comput. 2, 118–127 (1964)

    Article  Google Scholar 

  12. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint arXiv:1410.5401 (2014)

  13. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild with convolutional neural networks. Int. J. Comput. Vis. 116(1), 1–20 (2016)

    Article  MathSciNet  Google Scholar 

  14. Khare, V., Shivakumara, P., Raveendran, P., Blumenstein, M.: A blind deconvolution model for scene text detection and recognition in video. Pattern Recogn. 54, 128–148 (2016)

    Article  Google Scholar 

  15. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems! arXiv preprint arXiv:1803.08475 (2018)

  16. Liu, X., Gao, F., Zhang, Q., Zhao, H.: Graph convolution for multimodal information extraction from visually rich documents. arXiv preprint arXiv:1903.11279 (2019)

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  18. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving Jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  19. Pomeranz, D., Shemesh, M., Ben-Shahar, O.: A fully automated greedy square jigsaw puzzle solver. In: CVPR 2011, pp. 9–16. IEEE (2011)

    Google Scholar 

  20. Rong, X., Yi, C., Tian, Y.: Unambiguous text localization and retrieval for cluttered scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5494–5502 (2017)

    Google Scholar 

  21. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science, Tech. rep. (1985)

    Google Scholar 

  22. Cruz, R.S., Fernando, B., Cherian, A., Gould, S.: DeepPermNet: visual permutation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3949–3957 (2017)

    Google Scholar 

  23. See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-generator networks. arXiv preprint arXiv:1704.04368 (2017)

  24. Sholomon, D., David, O., Netanyahu, N.S.: A genetic algorithm-based solver for very large Jigsaw puzzles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1767–1774 (2013)

    Google Scholar 

  25. Sinkhorn, R.: A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Stat. 35(2), 876–879 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pac. J. Math. 21(2), 343–348 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  28. Vinyals, O., Bengio, S., Kudlur, M.: Order matters: sequence to sequence for sets. arXiv preprint arXiv:1511.06391 (2015)

  29. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural Information Processing Systems, pp. 2692–2700 (2015)

    Google Scholar 

  30. Weston, J., et al.: Towards AI-complete question answering: a set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698 (2015)

  31. Xu, K., Wu, L., Wang, Z., Feng, Y., Witbrock, M., Sheinin, V.: Graph2Seq: graph to sequence learning with attention-based neural networks. arXiv preprint arXiv:1804.00823 (2018)

  32. Yin, F., Wu, Y.C., Zhang, X.Y., Liu, C.L.: Scene text recognition with sliding convolutional character models. arXiv preprint arXiv:1709.01727 (2017)

  33. You, Y., Jia, W., Liu, T., Yang, W.: Improving abstractive document summarization with salient information modeling. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2132–2141 (2019)

    Google Scholar 

  34. Zhu, Y., Yao, C., Bai, X.: Scene text detection and recognition: recent advances and future trends. Front. Comput. Sci. 10(1), 19–36 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by Alibaba-Zhejiang University Joint Institute of Frontier Technologies, The National Key R&D Program of China (No. 2018YFC2002603, 2018YFB1403202), Zhejiang Provincial Natural Science Foundation of China (No. LZ13F020001), the National Natural Science Foundation of China (No. 61972349, 61173185, 61173186) and the National Key Technology R&D Program of China (No. 2012BAI34B01, 2014BAK15B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajun Bu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Gao, F., Bu, J., Wang, Y., Yu, Z., Zheng, Q. (2020). An End-to-End OCR Text Re-organization Sequence Learning for Rich-Text Detail Image Comprehension. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12370. Springer, Cham. https://doi.org/10.1007/978-3-030-58595-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58595-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58594-5

  • Online ISBN: 978-3-030-58595-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics