Skip to main content

Learning Open Set Network with Discriminative Reciprocal Points

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12348))

Included in the following conference series:

Abstract

Open set recognition is an emerging research area that aims to simultaneously classify samples from predefined classes and identify the rest as ‘unknown’. In this process, one of the key challenges is to reduce the risk of generalizing the inherent characteristics of numerous unknown samples learned from a small amount of known data. In this paper, we propose a new concept, Reciprocal Point, which is the potential representation of the extra-class space corresponding to each known category. The sample can be classified to known or unknown by the otherness with reciprocal points. To tackle the open set problem, we offer a novel open space risk regularization term. Based on the bounded space constructed by reciprocal points, the risk of unknown is reduced through multi-category interaction. The novel learning framework called Reciprocal Point Learning (RPL), which can indirectly introduce the unknown information into the learner with only known classes, so as to learn more compact and discriminative representations. Moreover, we further construct a new large-scale challenging aircraft dataset for open set recognition: Aircraft 300 (Air-300). Extensive experiments on multiple benchmark datasets indicate that our framework is significantly superior to other existing approaches and achieves state-of-the-art performance on standard open set benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartlett, P.L., Wegkamp, M.H.: Classification with a reject option using a hinge loss. J. Mach. Learn. Res. 9, 1823–1840 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Bendale, A., Boult, T.E.: Towards open set deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1563–1572 (2016)

    Google Scholar 

  3. Da, Q., Yu, Y., Zhou, Z.H.: Learning with augmented class by exploiting unlabeled data. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  4. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240. ACM (2006)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Dhamija, A.R., Günther, M., Boult, T.: Reducing network agnostophobia. In: Advances in Neural Information Processing Systems, pp. 9157–9168 (2018)

    Google Scholar 

  7. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  8. Ge, Z., Demyanov, S., Chen, Z., Garnavi, R.: Generative OpenMax for multi-class open set classification. arXiv preprint arXiv:1707.07418 (2017)

  9. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  10. Hein, M., Andriushchenko, M., Bitterwolf, J.: Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 41–50 (2019)

    Google Scholar 

  11. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

  12. Hendrycks, D., Mazeika, M., Dietterich, T.G.: Deep anomaly detection with outlier exposure. arXiv preprint arXiv:1812.04606 (2018)

  13. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report. Citeseer (2009)

    Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for detecting out-of-distribution samples. arXiv preprint arXiv:1711.09325 (2017)

  16. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690 (2017)

  17. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. arXiv preprint arXiv:1904.05160 (2019)

  18. Nalisnick, E., Matsukawa, A., Teh, Y.W., Gorur, D., Lakshminarayanan, B.: Do deep generative models know what they don’t know? arXiv preprint arXiv:1810.09136 (2018)

  19. Neal, L., Olson, M., Fern, X., Wong, W.K., Li, F.: Open set learning with counterfactual images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 613–628 (2018)

    Google Scholar 

  20. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  21. Oza, P., Patel, V.M.: C2AE: class conditioned auto-encoder for open-set recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2307–2316 (2019)

    Google Scholar 

  22. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  23. Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1757–1772 (2013)

    Article  Google Scholar 

  24. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  25. Yang, H.M., Zhang, X.Y., Yin, F., Liu, C.L.: Robust classification with convolutional prototype learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3474–3482 (2018)

    Google Scholar 

  26. Yoshihashi, R., Shao, W., Kawakami, R., You, S., Iida, M., Naemura, T.: Classification-reconstruction learning for open-set recognition. arXiv preprint arXiv:1812.04246 (2018)

  27. Yuan, M., Wegkamp, M.: Classification methods with reject option based on convex risk minimization. J. Mach. Learn. Res. 11, 111–130 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

Download references

Acknowledgments

This work is partially supported by grants from the National Key R&D Program of China under grant 2017YFB1002400, the Key-Area Research and Development Program of Guangdong Province under Grant 2019B010153002, and the National Natural Science Foundation of China under contract No. 61825101, No. 61702515 and No. U1611461.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peixi Peng or Yonghong Tian .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8596 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, G. et al. (2020). Learning Open Set Network with Discriminative Reciprocal Points. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12348. Springer, Cham. https://doi.org/10.1007/978-3-030-58580-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58580-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58579-2

  • Online ISBN: 978-3-030-58580-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics