Skip to main content

AR-Net: Adaptive Frame Resolution for Efficient Action Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12352))

Included in the following conference series:

Abstract

Action recognition is an open and challenging problem in computer vision. While current state-of-the-art models offer excellent recognition results, their computational expense limits their impact for many real-world applications. In this paper, we propose a novel approach, called AR-Net (Adaptive Resolution Network), that selects on-the-fly the optimal resolution for each frame conditioned on the input for efficient action recognition in long untrimmed videos. Specifically, given a video frame, a policy network is used to decide what input resolution should be used for processing by the action recognition model, with the goal of improving both accuracy and efficiency. We efficiently train the policy network jointly with the recognition model using standard back-propagation. Extensive experiments on several challenging action recognition benchmark datasets well demonstrate the efficacy of our proposed approach over state-of-the-art methods. The project page can be found at https://mengyuest.github.io/AR-Net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notation here is for brevity. Actually, the output for \(\varPhi \) is a feature vector, whereas the output for \(\varPsi _{L-1}\) is a prediction. In implementation, we use a fully connected layer after the feature vector to get the prediction.

References

  1. Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Eng. 29(6), 33–41 (1984)

    Google Scholar 

  2. Araujo, A., Negrevergne, B., Chevaleyre, Y., Atif, J.: Training compact deep learning models for video classification using circulant matrices. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11132, pp. 271–286. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11018-5_25

    Chapter  Google Scholar 

  3. Bengio, E., Bacon, P.L., Pineau, J., Precup, D.: Conditional computation in neural networks for faster models. arXiv preprint arXiv:1511.06297 (2015)

  4. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)

  5. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: ActivityNet: a large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–970 (2015)

    Google Scholar 

  6. Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354–370. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_22

    Chapter  Google Scholar 

  7. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  8. Chen, C.F., Fan, Q., Mallinar, N., Sercu, T., Feris, R.: Big-little net: An efficient multi-scale feature representation for visual and speech recognition. arXiv preprint arXiv:1807.03848 (2018)

  9. Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing neural networks with the hashing trick. In: International Conference on Machine Learning, pp. 2285–2294 (2015)

    Google Scholar 

  10. Chéron, G., Laptev, I., Schmid, C.: P-CNN: pose-based CNN features for action recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3218–3226 (2015)

    Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  12. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625–2634 (2015)

    Google Scholar 

  13. Dong, X., Huang, J., Yang, Y., Yan, S.: More is less: a more complicated network with less inference complexity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5840–5848 (2017)

    Google Scholar 

  14. Fan, H., Xu, Z., Zhu, L., Yan, C., Ge, J., Yang, Y.: Watching a small portion could be as good as watching all: towards efficient video classification. In: IJCAI International Joint Conference on Artificial Intelligence (2018)

    Google Scholar 

  15. Fan, Q., Chen, C.F.R., Kuehne, H., Pistoia, M., Cox, D.: More is less: learning efficient video representations by big-little network and depthwise temporal aggregation. In: Advances in Neural Information Processing Systems, pp. 2261–2270 (2019)

    Google Scholar 

  16. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6202–6211 (2019)

    Google Scholar 

  17. Feichtenhofer, C., Pinz, A., Wildes, R.P.: Spatiotemporal multiplier networks for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4768–4777 (2017)

    Google Scholar 

  18. Figurnov, M., et al.: Spatially adaptive computation time for residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1039–1048 (2017)

    Google Scholar 

  19. Gao, M., Yu, R., Li, A., Morariu, V.I., Davis, L.S.: Dynamic zoom-in network for fast object detection in large images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6926–6935 (2018)

    Google Scholar 

  20. Gao, R., Oh, T.H., Grauman, K., Torresani, L.: Listen to look: Action recognition by previewing audio. arXiv preprint arXiv:1912.04487 (2019)

  21. Gkioxari, G., Malik, J.: Finding action tubes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 759–768 (2015)

    Google Scholar 

  22. Glynn, P.W.: Likelihood ratio gradient estimation for stochastic systems. Commun. ACM 33(10), 75–84 (1990)

    Article  Google Scholar 

  23. Graves, A.: Adaptive computation time for recurrent neural networks. arXiv preprint arXiv:1603.08983 (2016)

  24. Guo, Y., Shi, H., Kumar, A., Grauman, K., Rosing, T., Feris, R.: SpotTune: transfer learning through adaptive fine-tuning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4805–4814 (2019)

    Google Scholar 

  25. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet? In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 6546–6555 (2018)

    Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  27. Howard, A.G., et al.: MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  28. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and \(<\)0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)

  29. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-Softmax. arXiv preprint arXiv:1611.01144 (2016)

  30. Jiang, Y.G., Wu, Z., Wang, J., Xue, X., Chang, S.F.: Exploiting feature and class relationships in video categorization with regularized deep neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 40(2), 352–364 (2017)

    Article  Google Scholar 

  31. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  32. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  33. Korbar, B., Tran, D., Torresani, L.: SCSampler: sampling salient clips from video for efficient action recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6232–6242 (2019)

    Google Scholar 

  34. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  35. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient ConvNets. arXiv preprint arXiv:1608.08710 (2016)

  36. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7083–7093 (2019)

    Google Scholar 

  37. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  38. McGill, M., Perona, P.: Deciding how to decide: dynamic routing in artificial neural networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2363–2372 (2017)

    Google Scholar 

  39. Monfort, M., et al.: Moments in time dataset: one million videos for event understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 502–508 (2019)

    Article  Google Scholar 

  40. Monfort, M., et al.: Multi-moments in time: Learning and interpreting models for multi-action video understanding. arXiv preprint arXiv:1911.00232 (2019)

  41. Najibi, M., Singh, B., Davis, L.S.: AutoFocus: efficient multi-scale inference. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9745–9755 (2019)

    Google Scholar 

  42. Pedersoli, M., Vedaldi, A., Gonzalez, J., Roca, X.: A coarse-to-fine approach for fast deformable object detection. Pattern Recogn. 48(5), 1844–1853 (2015)

    Article  Google Scholar 

  43. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  44. Piergiovanni, A., Angelova, A., Ryoo, M.S.: Tiny video networks. arXiv preprint arXiv:1910.06961 (2019)

  45. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  46. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  47. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp. 1139–1147 (2013)

    Google Scholar 

  48. Tan, M., Le, Q.V.: EfficientNet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

  49. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  50. Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-separated convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5552–5561 (2019)

    Google Scholar 

  51. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  52. Veit, A., Belongie, S.: Convolutional networks with adaptive inference graphs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 3–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_1

    Chapter  Google Scholar 

  53. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: CVPR 2011, pp. 3169–3176. IEEE (2011)

    Google Scholar 

  54. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  55. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  56. Wang, X., Yu, F., Dou, Z.-Y., Darrell, T., Gonzalez, J.E.: SkipNet: learning dynamic routing in convolutional networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 420–436. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_25

    Chapter  Google Scholar 

  57. Wen, W., Xu, C., Wu, C., Wang, Y., Chen, Y., Li, H.: Coordinating filters for faster deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 658–666 (2017)

    Google Scholar 

  58. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

    MATH  Google Scholar 

  59. Wu, W., He, D., Tan, X., Chen, S., Wen, S.: Multi-agent reinforcement learning based frame sampling for effective untrimmed video recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6222–6231 (2019)

    Google Scholar 

  60. Wu, Z., et al.: BlockDrop: dynamic inference paths in residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8817–8826 (2018)

    Google Scholar 

  61. Wu, Z., Xiong, C., Jiang, Y.G., Davis, L.S.: LiteEval: a coarse-to-fine framework for resource efficient video recognition. In: Advances in Neural Information Processing Systems, pp. 7778–7787 (2019)

    Google Scholar 

  62. Wu, Z., Xiong, C., Ma, C.Y., Socher, R., Davis, L.S.: AdaFrame: adaptive frame selection for fast video recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1278–1287 (2019)

    Google Scholar 

  63. Yeung, S., Russakovsky, O., Mori, G., Fei-Fei, L.: End-to-end learning of action detection from frame glimpses in videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2678–2687 (2016)

    Google Scholar 

  64. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  65. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in videos. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 831–846. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_49

    Chapter  Google Scholar 

Download references

Acknowledgement

This work is supported by IARPA via DOI/IBC contract number D17PC00341. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. This work is partly supported by the MIT-IBM Watson AI Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Meng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2981 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, Y. et al. (2020). AR-Net: Adaptive Frame Resolution for Efficient Action Recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58571-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58570-9

  • Online ISBN: 978-3-030-58571-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics