Skip to main content

A Differentiable Recurrent Surface for Asynchronous Event-Based Data

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12365))

Included in the following conference series:

Abstract

Dynamic Vision Sensors (DVSs) asynchronously stream events in correspondence of pixels subject to brightness changes. Differently from classic vision devices, they produce a sparse representation of the scene. Therefore, to apply standard computer vision algorithms, events need to be integrated into a frame or event-surface. This is usually attained through hand-crafted grids that reconstruct the frame using ad-hoc heuristics. In this paper, we propose Matrix-LSTM, a grid of Long Short-Term Memory (LSTM) cells that efficiently process events and learn end-to-end task-dependent event-surfaces. Compared to existing reconstruction approaches, our learned event-surface shows good flexibility and expressiveness on optical flow estimation on the MVSEC benchmark and it improves the state-of-the-art of event-based object classification on the N-Cars dataset.

A. Romanoni—Work done prior to Amazon involvement of the author and does not reflect views of the Amazon company.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code available at https://marcocannici.github.io/matrixlstm.

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, pp. 265–283 (2016)

    Google Scholar 

  2. Berner, R., Brandli, C., Yang, M., Liu, S.C., Delbruck, T.: A 240\(\times \)180 10mW 12us latency sparse-output vision sensor for mobile applications. In: 2013 Symposium on VLSI Circuits, pp. C186–C187. IEEE (2013)

    Google Scholar 

  3. Bi, Y., Chadha, A., Abbas, A., Bourtsoulatze, E., Andreopoulos, Y.: Graph-based object classification for neuromorphic vision sensing. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 491–501 (2019)

    Google Scholar 

  4. Cannici, M., Ciccone, M., Romanoni, A., Matteucci, M.: Asynchronous convolutional networks for object detection in neuromorphic cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  5. Cannici, M., Ciccone, M., Romanoni, A., Matteucci, M.: Attention mechanisms for object recognition with event-based cameras. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1127–1136. IEEE (2019)

    Google Scholar 

  6. Cohen, G.K.: Event-Based Feature Detection, Recognition and Classification. Theses, Université Pierre et Marie Curie - Paris VI (September 2016)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  8. Gallego, G., et al.: Event-based vision: A survey. arXiv preprint arXiv:1904.08405 (2019)

  9. Gehrig, D., Loquercio, A., Derpanis, K.G., Scaramuzza, D.: End-to-end learning of representations for asynchronous event-based data. https://github.com/uzh-rpg/rpg_event_representation_learning

  10. Gehrig, D., Loquercio, A., Derpanis, K.G., Scaramuzza, D.: End-to-end learning of representations for asynchronous event-based data. In: IEEE International Conference of Computer Vision (ICCV) (October 2019)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  13. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  15. Lagorce, X., Orchard, G., Galluppi, F., Shi, B.E., Benosman, R.B.: HOTS: a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1346–1359 (2016)

    Article  Google Scholar 

  16. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)

    Article  Google Scholar 

  17. Lichtsteiner, P., Posch, C., Delbruck, T.: A \({128}{\times }{128}\)\(120\) db \(15 \mu \)s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circ. 43(2), 566–576 (2008)

    Article  Google Scholar 

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2015)

    Google Scholar 

  19. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  20. Maqueda, A.I., Loquercio, A., Gallego, G., García, N., Scaramuzza, D.: Event-based vision meets deep learning on steering prediction for self-driving cars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5419–5427 (2018)

    Google Scholar 

  21. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  22. Neil, D., Pfeiffer, M., Liu, S.C.: Phased LSTM: accelerating recurrent network training for long or event-based sequences. In: Advances in Neural Information Processing Systems, pp. 3882–3890 (2016)

    Google Scholar 

  23. Orchard, G., Jayawant, A., Cohen, G.K., Thakor, N.: Converting static image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9, 437 (2015)

    Article  Google Scholar 

  24. Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N., Benosman, R.: HFirst: a temporal approach to object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2028–2040 (2015)

    Article  Google Scholar 

  25. Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., Delbruck, T.: Retinomorphic event-based vision sensors: bioinspired cameras with spiking output. Proc. IEEE 102(10), 1470–1484 (2014)

    Article  Google Scholar 

  26. Rebecq, H., Ranftl, R., Koltun, V., Scaramuzza, D.: Events-to-video: bringing modern computer vision to event cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3857–3866 (2019)

    Google Scholar 

  27. Scheerlinck, C., Rebecq, H., Stoffregen, T., Barnes, N., Mahony, R., Scaramuzza, D.: CED: color event camera dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  28. Sekikawa, Y., Hara, K., Saito, H.: EventNet: asynchronous recursive event processing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3887–3896 (2019)

    Google Scholar 

  29. Serrano-Gotarredona, T., Linares-Barranco, B.: A 128\(\times \)128 \(1.5\%\) contrast sensitivity \(0.9\%\) FPN \(3 \upmu \)s latency 4 mW asynchronous frame-free dynamic vision sensor using transimpedance preamplifiers. IEEE J. Solid-State Circ. 48(3), 827–838 (2013)

    Article  Google Scholar 

  30. SHI, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W., WOO, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28, pp. 802–810. Curran Associates, Inc. (2015)

    Google Scholar 

  31. Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R.: HATS: histograms of averaged time surfaces for robust event-based object classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1731–1740 (2018)

    Google Scholar 

  32. Steiner, B., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  33. Wang, Q., Zhang, Y., Yuan, J., Lu, Y.: Space-time event clouds for gesture recognition: from RGB cameras to event cameras. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1826–1835. IEEE (2019)

    Google Scholar 

  34. Ye, C., Mitrokhin, A., Fermüller, C., Yorke, J.A., Aloimonos, Y.: Unsupervised learning of dense optical flow, depth and egomotion from sparse event data. arXiv preprint arXiv:1809.08625 (2018)

  35. Zhu, A., Yuan, L., Chaney, K., Daniilidis, K.: EV-FlowNet: Self-supervised optical flow estimation for event-based cameras. https://github.com/daniilidis-group/EV-FlowNet

  36. Zhu, A., Yuan, L., Chaney, K., Daniilidis, K.: EV-FlowNet: self-supervised optical flow estimation for event-based cameras. In: Proceedings of Robotics: Science and Systems, Pittsburgh, Pennsylvania (June 2018)

    Google Scholar 

  37. Zhu, A.Z., Thakur, D., Özaslan, T., Pfrommer, B., Kumar, V., Daniilidis, K.: The multivehicle stereo event camera dataset: an event camera dataset for 3D perception. IEEE Robot. Autom. Lett. 3(3), 2032–2039 (2018)

    Article  Google Scholar 

  38. Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: Unsupervised event-based learning of optical flow, depth, and egomotion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 989–997 (2019)

    Google Scholar 

Download references

Acknowledgments

We thank Alex Zihao Zhu for his help on replicating Ev-FlowNet results and the ISPL group at Politecnico di Milano for GPU support. This research is supported from project TEINVEIN, CUP: E96D17000110009 - Call “Accordi per la Ricerca e l’Innovazione”, cofunded by POR FESR 2014-2020 (Regional Operational Programme, European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cannici .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 301 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cannici, M., Ciccone, M., Romanoni, A., Matteucci, M. (2020). A Differentiable Recurrent Surface for Asynchronous Event-Based Data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12365. Springer, Cham. https://doi.org/10.1007/978-3-030-58565-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58565-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58564-8

  • Online ISBN: 978-3-030-58565-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics