Skip to main content

LiteFlowNet3: Resolving Correspondence Ambiguity for More Accurate Optical Flow Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12365))

Included in the following conference series:

Abstract

Deep learning approaches have achieved great success in addressing the problem of optical flow estimation. The keys to success lie in the use of cost volume and coarse-to-fine flow inference. However, the matching problem becomes ill-posed when partially occluded or homogeneous regions exist in images. This causes a cost volume to contain outliers and affects the flow decoding from it. Besides, the coarse-to-fine flow inference demands an accurate flow initialization. Ambiguous correspondence yields erroneous flow fields and affects the flow inferences in subsequent levels. In this paper, we introduce LiteFlowNet3, a deep network consisting of two specialized modules, to address the above challenges. (1) We ameliorate the issue of outliers in the cost volume by amending each cost vector through an adaptive modulation prior to the flow decoding. (2) We further improve the flow accuracy by exploring local flow consistency. To this end, each inaccurate optical flow is replaced with an accurate one from a nearby position through a novel warping of the flow field. LiteFlowNet3 not only achieves promising results on public benchmarks but also has a small model size and a fast runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailer, C., Taetz, B., Stricker, D.: Flow fields: dense correspondence fields for highly accurate large displacement optical flow estimation. In: ICCV, pp. 4015–4023 (2015)

    Google Scholar 

  2. Brabandere, B.D., Jia, X., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In: NIPS (2016)

    Google Scholar 

  3. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  4. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44

    Chapter  Google Scholar 

  5. Dai, J., et al.: Deformable convolutional networks. In: ICCV, pp. 764–773 (2017)

    Google Scholar 

  6. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: ICCV, pp. 2758–2766 (2015)

    Google Scholar 

  7. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? In: CVPR, pp. 3354–3361 (2012)

    Google Scholar 

  8. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Aritif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  9. Hui, T.W., Loy, C.C.: Supplementary material for LiteFlowNet3: resolving correspondence ambiguity for more accurate optical flow estimation (2020)

    Google Scholar 

  10. Hui, T.W., Tang, X., Loy, C.C.: LiteFlowNet: a lightweight convolutional neural network for optical flow estimation. In: CVPR, pp. 8981–8989 (2018)

    Google Scholar 

  11. Hui, T.W., Tang, X., Loy, C.C.: A lightweight optical flow CNN - revisiting data fidelity and regularization. TPAMI (2020). https://doi.org/10.1109/TPAMI.2020.2976928

    Article  Google Scholar 

  12. Hur, J., Roth, S.: Iterative residual refinement for joint optical flow and occlusion estimation. In: CVPR, pp. 5754–5763 (2019)

    Google Scholar 

  13. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet2.0: evolution of optical flow estimation with deep networks. In: CVPR, pp. 2462–2470 (2017)

    Google Scholar 

  14. Ilg, E., Saikia, T., Keuper, M., Brox, T.: Occlusions, motion and depth boundaries with a generic network for disparity, optical flow or scene flow estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_38

    Chapter  Google Scholar 

  15. Janai, J., Güney, F., Ranjan, A., Black, M., Geiger, A.: Unsupervised learning of multi-frame optical flow with occlusions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 713–731. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_42

    Chapter  Google Scholar 

  16. Jiang, H., Sun, D., Jampani, V., Lv, Z., Learned-Miller, E., Kautz, J.: SENSE: a shared encoder network for scene-flow estimation. In: ICCV, pp. 3195–3204 (2019)

    Google Scholar 

  17. Kang, S.B., Szeliski, R., Chai, J.: Handling occlusions in dense multi-view stereo. In: CVPR, pp. 103–110 (2001)

    Google Scholar 

  18. Liu, P., Lyu, M., King, I., Xu, J.: SelFlow: self-supervised learning of optical flow. In: CVPR, pp. 4566–4575 (2019)

    Google Scholar 

  19. Lu, Y., Valmadre, J., Wang, H., Kannala, J., Harandi, M., Torr, P.H.S.: Devon: deformable volume network for learning optical flow. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11134, pp. 673–677. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11024-6_50

    Chapter  Google Scholar 

  20. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: CVPR, pp. 4040–4048 (2016)

    Google Scholar 

  21. Meister, S., Hur, J., Roth, S.: UnFlow: unsupervised learning of opticalflow with a bidirectional census loss. In: AAAI, pp. 7251–7259 (2018)

    Google Scholar 

  22. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: CVPR, pp. 3061–3070 (2015)

    Google Scholar 

  23. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. IJCV 67(2), 141–158 (2006)

    Article  Google Scholar 

  24. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: CVPR, pp. 4161–4170 (2017)

    Google Scholar 

  25. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: EpicFlow: edge-preserving interpolation of correspondences for optical flow. In: CVPR, pp. 1164–1172 (2015)

    Google Scholar 

  26. Rhemann, C., Hosni, A., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-volume filtering for visual correspondence and beyond. In: CVPR, pp. 3017–3024 (2011)

    Google Scholar 

  27. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: CVPR, pp. 8934–8943 (2018)

    Google Scholar 

  28. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Models matter, so does training: an empirical study of CNNs for optical flow estimation. TPAMI (2019). https://doi.org/10.1109/TPAMI.2019.2894353

    Article  Google Scholar 

  29. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-L\(^{1}\) optical flow. In: BMVC (2009)

    Google Scholar 

  30. Xu, J., Ranftl, R., Koltun, V.: Accurate optical flow via direct cost volume processings. In: CVPR, pp. 1289–1297 (2017)

    Google Scholar 

  31. Yang, G., Ramanan, D.: Volumetric correspondence networks for optical flow. In: NeurIPS (2019)

    Google Scholar 

  32. Yin, Z., Darrell, T., Yu, F.: Hierarchical discrete distribution decomposition for match density estimation. In: CVPR, pp. 6044–6053 (2019)

    Google Scholar 

  33. Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony. IJCV 93(3), 368–388 (2011). https://doi.org/10.1007/s11263-011-0422-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tak-Wai Hui .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 22934 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hui, TW., Loy, C.C. (2020). LiteFlowNet3: Resolving Correspondence Ambiguity for More Accurate Optical Flow Estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12365. Springer, Cham. https://doi.org/10.1007/978-3-030-58565-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58565-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58564-8

  • Online ISBN: 978-3-030-58565-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics