Skip to main content

BroadFace: Looking at Tens of Thousands of People at once for Face Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

The datasets of face recognition contain an enormous number of identities and instances. However, conventional methods have difficulty in reflecting the entire distribution of the datasets because a mini-batch of small size contains only a small portion of all identities. To overcome this difficulty, we propose a novel method called BroadFace, which is a learning process to consider a massive set of identities, comprehensively. In BroadFace, a linear classifier learns optimal decision boundaries among identities from a large number of embedding vectors accumulated over past iterations. By referring more instances at once, the optimality of the classifier is naturally increased on the entire datasets. Thus, the encoder is also globally optimized by referring the weight matrix of the classifier. Moreover, we propose a novel compensation method to increase the number of referenced instances in the training stage. BroadFace can be easily applied on many existing methods to accelerate a learning process and obtain a significant improvement in accuracy without extra computational burden at inference stage. We perform extensive ablation studies and experiments on various datasets to show the effectiveness of BroadFace, and also empirically prove the validity of our compensation method. BroadFace achieves the state-of-the-art results with significant improvements on nine datasets in 1:1 face verification and 1:N face identification tasks, and is also effective in image retrieval.

Y. Kim and W. Park—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24670-1_36

    Chapter  Google Scholar 

  2. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: International Conference on Automatic Face and Gesture Recognition (2018)

    Google Scholar 

  3. Chen, D., Cao, X., Wen, F., Sun, J.: Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  4. Chen, D., Cao, X., Wipf, D., Wen, F., Sun, J.: An efficient joint formulation for Bayesian face verification. IEEE Trans. Pattern Anal. Mach. Intell. 39, 32–46 (2017)

    Article  Google Scholar 

  5. Chen, S., Liu, Y., Gao, X., Han, Z.: MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices. In: Zhou, J., et al. (eds.) CCBR 2018. LNCS, vol. 10996, pp. 428–438. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97909-0_46

    Chapter  Google Scholar 

  6. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  7. Deng, J., Zhou, Y., Zafeiriou, S.: Marginal loss for deep face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2017)

    Google Scholar 

  8. Duan, Y., Lu, J., Zhou, J.: UniformFace: learning deep equidistributed representation for face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  9. Goyal, P., et al.: Accurate, large minibatch SGD: training ImageNet in 1 hour. arXiv preprint arXiv:1706.02677 (2017)

  10. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  12. Hoffer, E., Hubara, I., Soudry, D.: Train longer, generalize better: closing the generalization gap in large batch training of neural networks. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  13. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 831–839 (2019)

    Google Scholar 

  14. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report, University of Massachusetts, Amherst (2007)

    Google Scholar 

  15. Kang, B.N., Kim, Y., Jun, B., Kim, D.: Attentional feature-pair relation networks for accurate face recognition. In: IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  16. Kang, B.-N., Kim, Y., Kim, D.: Pairwise relational networks for face recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 646–663. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_39

    Chapter  Google Scholar 

  17. Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The MegaFace benchmark: 1 million faces for recognition at scale. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  18. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-batch training for deep learning: Generalization gap and sharp minima. In: International Conference on Learning Representations (2017)

    Google Scholar 

  19. Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and simile classifiers for face verification. In: IEEE International Conference on Computer Vision (2009)

    Google Scholar 

  20. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  21. Liu, H., Zhu, X., Lei, Z., Li, S.Z.: AdaptiveFace: adaptive margin and sampling for face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  22. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  23. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  24. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  25. Maze, B., et al.: Iarpa janus benchmark - c: face dataset and protocol. In: International Conference on Biometrics (2018)

    Google Scholar 

  26. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: AgeDB: the first manually collected, in-the-wild age database. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2017)

    Google Scholar 

  27. Nguyen, H.V., Bai, L.: Cosine similarity metric learning for face verification. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6493, pp. 709–720. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19309-5_55

    Chapter  Google Scholar 

  28. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: British Machine Vision Conference (2015)

    Google Scholar 

  29. Roth, K., Brattoli, B., Ommer, B.: Mic: Mining interclass characteristics for improved metric learning. In: IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  30. Russakovsky, O., et al.: ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 115, 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  31. Sanakoyeu, A., Tschernezki, V., Buchler, U., Ommer, B.: Divide and conquer the embedding space for metric learning. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  32. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  33. Sengupta, S., Chen, J., Castillo, C., Patel, V.M., Chellappa, R., Jacobs, D.W.: Frontal to profile face verification in the wild. In: IEEE Winter Conference on Applications of Computer Vision (2016)

    Google Scholar 

  34. Simonyan, K., Parkhi, O., Vedaldi, A., Zisserman, A.: Fisher vector faces in the wild. In: British Machine Vision Conference (2013)

    Google Scholar 

  35. Song, H.O., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  36. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  37. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-level performance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  38. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: IEEE Conference on Computer Vision and Pattern Recognition (1991)

    Google Scholar 

  39. Wang, F., Xiang, X., Cheng, J., Yuille, A.L.: NormFace: L2 hypersphere embedding for face verification. In: ACM International Conference on Multimedia (2017)

    Google Scholar 

  40. Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., Liu, W.: CosFace: large margin cosine loss for deep face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  41. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  42. Whitelam, C., et al.: Iarpa janus benchmark-b face dataset. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2017)

    Google Scholar 

  43. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched background similarity. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  44. Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. In: European Conference on Computer Vision Workshops (2008)

    Google Scholar 

  45. Wu, C.Y., Manmatha, R., Smola, A.J., Krahenbuhl, P.: Sampling matters in deep embedding learning. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  46. Xie, W., Shen, L., Zisserman, A.: Pairwise relational networks for face recognition. In: European Conference on Computer Vision (2018)

    Google Scholar 

  47. Yin, Q., Tang, X., Sun, J.: An associate-predict model for face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  48. You, Y., Gitman, I., Ginsburg, B.: Scaling SGD batch size to 32k for ImageNet training. arXiv preprint arXiv:1708.03888 (2017)

  49. Yu, B., Tao, D.: Deep metric learning with Tuplet margin loss. In: IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  50. Zhai, A., Wu, H.Y.: Classification is a strong baseline for deep metric learning. arXiv preprint arXiv:1811.12649 (2018)

  51. Zhang, X., Fang, Z., Wen, Y., Li, Z., Qiao, Y.: Range loss for deep face recognition with long-tailed training data. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  52. Zhao, K., Xu, J., Cheng, M.M.: RegularFace: Deep face recognition via exclusive regularization. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  53. Zheng, T., Deng, W.: Cross-pose LFW: a database for studying cross-pose face recognition in unconstrained environments. Technical report, Beijing University of Posts and Telecommunications (2018)

    Google Scholar 

  54. Zheng, T., Deng, W., Hu, J.: Cross-age LFW: A database for studying cross-age face recognition in unconstrained environments. arXiv preprint arXiv:1708.08197 (2017)

Download references

Acknowledgements

We would like to thank AI R&D team of Kakao Enterprise for the helpful discussion. In particular, we would like to thank Yunmo Park who designed the visual materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghyun Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, Y., Park, W., Shin, J. (2020). BroadFace: Looking at Tens of Thousands of People at once for Face Recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58545-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58544-0

  • Online ISBN: 978-3-030-58545-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics