Skip to main content

Learning Disentangled Feature Representation for Hybrid-Distorted Image Restoration

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Hybrid-distorted image restoration (HD-IR) is dedicated to restore real distorted image that is degraded by multiple distortions. Existing HD-IR approaches usually ignore the inherent interference among hybrid distortions which compromises the restoration performance. To decompose such interference, we introduce the concept of Disentangled Feature Learning to achieve the feature-level divide-and-conquer of hybrid distortions. Specifically, we propose the feature disentanglement module (FDM) to distribute feature representations of different distortions into different channels by revising gain-control-based normalization. We also propose a feature aggregation module (FAM) with channel-wise attention to adaptively filter out the distortion representations and aggregate useful content information from different channels for the construction of raw image. The effectiveness of the proposed scheme is verified by visualizing the correlation matrix of features and channel responses of different distortions. Extensive experimental results also prove superior performance of our approach compared with the latest HD-IR schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman, D., Avidan, S., et al.: Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674–1682 (2016)

    Google Scholar 

  2. Bianco, S., Celona, L., Napoletano, P., Schettini, R.: Disentangling image distortions in deep feature space (2020)

    Google Scholar 

  3. Chen, T., et al.: ABD-Net: attentive but diverse person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8351–8361 (2019)

    Google Scholar 

  4. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  5. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  6. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: ACM Transactions on Graphics (TOG), vol. 25, pp. 787–794. ACM (2006)

    Google Scholar 

  7. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1664–1673 (2018)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Jin, X., Chen, Z., Lin, J., Chen, J., Zhou, W., Shan, C.: A decomposed dual-cross generative adversarial network for image rain removal. In: BMVC, p. 119 (2018)

    Google Scholar 

  10. Jin, X., Chen, Z., Lin, J., Chen, Z., Zhou, W.: Unsupervised single image deraining with self-supervised constraints. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 2761–2765. IEEE (2019)

    Google Scholar 

  11. Jin, X., Lan, C., Zeng, W., Chen, Z., Zhang, L.: Style normalization and restitution for generalizable person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3143–3152 (2020)

    Google Scholar 

  12. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018)

    Google Scholar 

  15. Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: Deblurgan-v2: deblurring (orders-of-magnitude) faster and better. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8878–8887 (2019)

    Google Scholar 

  16. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  17. Lehtinen, J., et al.: Noise2noise: learning image restoration without clean data. arXiv preprint arXiv:1803.04189 (2018)

  18. Li, G., He, X., Zhang, W., Chang, H., Dong, L., Lin, L.: Non-locally enhanced encoder-decoder network for single image de-raining. arXiv preprint arXiv:1808.01491 (2018)

  19. Li, M., Zhu, X., Gong, S.: Unsupervised person re-identification by deep learning tracklet association. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 737–753 (2018)

    Google Scholar 

  20. Li, X., Wu, J., Lin, Z., Liu, H., Zha, H.: Recurrent squeeze-and-excitation context aggregation net for single image deraining. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 254–269 (2018)

    Google Scholar 

  21. Li, Z., Yang, J., Liu, Z., Yang, X., Jeon, G., Wu, W.: Feedback network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3867–3876 (2019)

    Google Scholar 

  22. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  23. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.T.: Bi-Real Net: enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 722–737 (2018)

    Google Scholar 

  24. Lu, B., Chen, J.C., Chellappa, R.: Unsupervised domain-specific deblurring via disentangled representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10225–10234 (2019)

    Google Scholar 

  25. Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: Edgeconnect: generative image inpainting with adversarial edge learning. arXiv preprint arXiv:1901.00212 (2019)

  26. Schwartz, O., Simoncelli, E.P.: Natural signal statistics and sensory gain control. Nat. Neurosci. 4(8), 819 (2001)

    Article  Google Scholar 

  27. Shi, Y., Wu, X., Zhu, M.: Low-light image enhancement algorithm based on Retinex and generative adversarial network. arXiv preprint arXiv:1906.06027 (2019)

  28. Suganuma, M., Liu, X., Okatani, T.: Attention-based adaptive selection of operations for image restoration in the presence of unknown combined distortions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9039–9048 (2019)

    Google Scholar 

  29. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 769–777 (2015)

    Google Scholar 

  30. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)

    Google Scholar 

  31. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018)

    Google Scholar 

  32. Wang, L., Li, Y., Wang, S.: Deepdeblur: fast one-step blurry face images restoration. arXiv preprint arXiv:1711.09515 (2017)

  33. Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019)

    Google Scholar 

  34. Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1357–1366 (2017)

    Google Scholar 

  35. Yang, X., Xu, Z., Luo, J.: Towards perceptual image dehazing by physics-based disentanglement and adversarial training. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  36. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

  37. Yu, K., Dong, C., Lin, L., Change Loy, C.: Crafting a toolchain for image restoration by deep reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2443–2452 (2018)

    Google Scholar 

  38. Yuan, Q., Li, J., Zhang, L., Wu, Z., Liu, G.: Blind motion deblurring with cycle generative adversarial networks. arXiv preprint arXiv:1901.01641 (2019)

  39. Yuan, Y., Liu, S., Zhang, J., Zhang, Y., Dong, C., Lin, L.: Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 701–710 (2018)

    Google Scholar 

  40. Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream dense network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 695–704 (2018)

    Google Scholar 

  41. Zhang, H., Sindagi, V., Patel, V.M.: Joint transmission map estimation and dehazing using deep networks. arXiv preprint arXiv:1708.00581 (2017)

  42. Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE Trans. Circuits Syst. Video Technol. (2019)

    Google Scholar 

  43. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  44. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  45. Zhao, J., et al.: DD-CycleGAN: unpaired image dehazing via double-discriminator cycle-consistent generative adversarial network. Eng. Appl. Artif. Intell. 82, 263–271 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by NSFC under Grant U1908209, 61632001 and the National Key Research and Development Program of China 2018AAA0101400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibo Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 595 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X. et al. (2020). Learning Disentangled Feature Representation for Hybrid-Distorted Image Restoration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12374. Springer, Cham. https://doi.org/10.1007/978-3-030-58526-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58526-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58525-9

  • Online ISBN: 978-3-030-58526-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics