Skip to main content

NSGANetV2: Evolutionary Multi-objective Surrogate-Assisted Neural Architecture Search

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12346))

Included in the following conference series:

Abstract

In this paper, we propose an efficient NAS algorithm for generating task-specific models that are competitive under multiple competing objectives. It comprises of two surrogates, one at the architecture level to improve sample efficiency and one at the weights level, through a supernet, to improve gradient descent training efficiency. On standard benchmark datasets (C10, C100, ImageNet), the resulting models, dubbed NSGANetV2, either match or outperform models from existing approaches with the search being orders of magnitude more sample efficient. Furthermore, we demonstrate the effectiveness and versatility of the proposed method on six diverse non-standard datasets, e.g. STL-10, Flowers102, Oxford Pets, FGVC Aircrafts etc. In all cases, NSGANetV2s improve the state-of-the-art (under mobile setting), suggesting that NAS can be a viable alternative to conventional transfer learning approaches in handling diverse scenarios such as small-scale or fine-grained datasets. Code is available at https://github.com/mikelzc1990/nsganetv2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Estimate from # of models evaluated by PNAS, actual sample size is not reported.

  2. 2.

    In the supplementary material we show that better rank-order correlation at the search stage ultimately leads to finding better performing architectures.

  3. 3.

    Due to space constraints, we report results from three datasets in the main paper and three more in the supplementary material.

References

  1. Baker, B., Gupta, O., Raskar, R., Naik, N.: Accelerating neural architecture search using performance prediction. arXiv preprint arXiv:1705.10823 (2017)

  2. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: Mixmatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  3. Bracken, J., McGill, J.T.: Mathematical programs with optimization problems in the constraints. Oper. Res. 21(1), 37–44 (1973). http://www.jstor.org/stable/169087

    Article  MathSciNet  Google Scholar 

  4. Brock, A., Lim, T., Ritchie, J., Weston, N.: SMASH: one-shot model architecture search through hypernetworks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  5. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once for all: train one network and specialize it for efficient deployment. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  6. Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target task and hardware. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  7. Chu, X., Zhang, B., Xu, R., Li, J.: FairNAS: Rethinking evaluation fairness of weight sharing neural architecture search. arXiv preprint arXiv:1907.01845 (2019)

  8. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (2011)

    Google Scholar 

  9. Dai, X., et al.: ChamNet: towards efficient network design through platform-aware model adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  10. Darlow, L.N., Crowley, E.J., Antoniou, A., Storkey, A.J.: CINIC-10 is not ImageNet or CIFAR-10. arXiv preprint arXiv:1810.03505 (2018)

  11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  12. Dong, J.-D., Cheng, A.-C., Juan, D.-C., Wei, W., Sun, M.: DPP-Net: device-aware progressive search for pareto-optimal neural architectures. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 540–555. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_32

    Chapter  Google Scholar 

  13. Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architecture search via Lamarckian evolution. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  14. Howard, A., et al.: Searching for MobileNetV3. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  15. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical report. Citeseer (2009)

    Google Scholar 

  16. Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture search. arXiv preprint arXiv:1902.07638 (2019)

  17. Liu, C.: Progressive neural architecture search. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 19–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_2

    Chapter  Google Scholar 

  18. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  19. Lu, Z., Deb, K., Boddeti, V.N.: MUXConv: information multiplexing in convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  20. Lu, Z., et al.: NSGA-Net: neural architecture search using multi-objective genetic algorithm. In: Genetic and Evolutionary Computation Conference (GECCO) (2019)

    Google Scholar 

  21. Luo, R., Tian, F., Qin, T., Chen, E., Liu, T.Y.: Neural architecture optimization. In: Advances in Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  22. Mei, J., et al.: AtomNAS: fine-grained end-to-end neural architecture search. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  23. Nayman, N., Noy, A., Ridnik, T., Friedman, I., Jin, R., Zelnik, L.: XNAS: neural architecture search with expert advice. In: Advances in Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  24. Nilsback, M., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 6th Indian Conference on Computer Vision, Graphics Image Processing (2008)

    Google Scholar 

  25. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture search via parameters sharing. In: International Conference on Machine Learning (ICML) (2018)

    Google Scholar 

  26. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: AAAI Conference on Artificial Intelligence Conference on Artificial Intelligence (2019)

    Google Scholar 

  27. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  28. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  29. Sun, Y., Wang, H., Xue, B., Jin, Y., Yen, G.G., Zhang, M.: Surrogate-assisted evolutionary deep learning using an end-to-end random forest-based performance predictor. IEEE Trans. Evol. Comput. (2019). https://doi.org/10.1109/TEVC.2019.2924461

    Article  Google Scholar 

  30. Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  31. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning (ICML) (2019)

    Google Scholar 

  32. Tan, M., Le, Q.V.: MixConv: mixed depthwise convolutional kernels. In: British Machine Vision Conference (BMVC) (2019)

    Google Scholar 

  33. Wang, X., Kihara, D., Luo, J., Qi, G.J.: EnAET: Self-trained ensemble autoencoding transformations for semi-supervised learning. arXiv preprint arXiv:1911.09265 (2019)

  34. Wu, B., et al.: FBNet: hardware-aware efficient ConvNet design via differentiable neural architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  35. Xie, S., Kirillov, A., Girshick, R., He, K.: Exploring randomly wired neural networks for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  36. Yu, K., Sciuto, C., Jaggi, M., Musat, C., Salzmann, M.: Evaluating the search phase of neural architecture search. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  37. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.) PPSN 1998. LNCS, vol. 1498. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056872

    Chapter  Google Scholar 

  38. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichao Lu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 523 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Z., Deb, K., Goodman, E., Banzhaf, W., Boddeti, V.N. (2020). NSGANetV2: Evolutionary Multi-objective Surrogate-Assisted Neural Architecture Search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58452-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58451-1

  • Online ISBN: 978-3-030-58452-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics