Skip to main content

Nanoneedle-Based Materials for Intracellular Studies

  • Chapter
  • First Online:
Bio-Nanomedicine for Cancer Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1295))

Abstract

Nanoneedles, defined as high aspect ratio structures with tip diameters of 5 to approximately 500 nm, are uniquely able to interface with the interior of living cells. Their nanoscale dimensions mean that they are able to penetrate the plasma membrane with minimal disruption of normal cellular functions, allowing researchers to probe the intracellular space and deliver or extract material from individual cells. In the last decade, a variety of strategies have been developed using nanoneedles, either singly or as arrays, to investigate the biology of cancer cells in vitro and in vivo. These include hollow nanoneedles for soluble probe delivery, nanocapillaries for single-cell biopsy, nano-AFM for direct physical measurements of cytosolic proteins, and a wide range of fluorescent and electrochemical nanosensors for analyte detection. Nanofabrication has improved to the point that nanobiosensors can detect individual vesicles inside the cytoplasm, delineate tumor margins based on intracellular enzyme activity, and measure changes in cell metabolism almost in real time. While most of these applications are currently in the proof-of-concept stage, nanoneedle technology is poised to offer cancer biologists a powerful new set of tools for probing cells with unprecedented spatial and temporal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

ANE:

Asymmetric nanopore electrodes

ATP:

Adenosine triphosphate

BNS:

Branched nanostraws

CNT:

Carbon nanotube

CTC:

Circulating tumor cell

CTSB:

Cathepsin B

DCE:

Dual carbon electrodes

ELISA:

Enzyme-linked immunosorbent assay

FET:

Field-effect transistor

FIB:

Focused ion beam

FRET:

Forster resonance energy transfer

GFP:

Green fluorescent protein

IP:

Immunoprecipitation

iPSC:

Induced pluripotent stem cells

LPS:

Lysophosphatidic acid

MB:

Methylene blue

MEA:

Multielectrode array

MFP:

Microfluidic probe

MMP:

Matrix metalloproteinase

MnSOD:

Manganese superoxide dismutase

MS:

Mass spectroscopy

NES:

Nano-electrospray

NFP:

Nanofountain probe

Osbpy:

Osmium bipyridine

PEG:

Polyethylene glycol

qPCR:

Quantitative polymerase chain reaction

RCA:

Rolling circle amplification

RFP:

Red fluorescent protein

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SCIM:

Scanning ion conductance microscopy

SECM:

Scanning electrochemical microscopy

SEM:

Scanning electron microscope

SERS:

Surface-enhanced Raman scattering

SOD:

Superoxide dismutase

SWCNT:

Single-walled carbon nanotube

References

  1. Chiappini, C., et al. (2015). Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: Exploring the biointerface. ACS Nano, 9(5), 5500–5509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson, S. E., & Bau, H. H. (2014). Electrical detection of cellular penetration during microinjection with carbon nanopipettes. Nanotechnology, 25(24), 245102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. VanDersarl, J. J., Xu, A. M., & Melosh, N. A. (2012). Nanostraws for direct fluidic intracellular access. Nano Letters, 12(8), 3881–3886.

    Article  CAS  PubMed  Google Scholar 

  4. Vilozny, B., et al. (2011). Reversible cation response with a protein-modified nanopipette. Analytical Chemistry, 83(16), 6121–6126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chiappini, C. (2017). Nanoneedle-based sensing in biological systems. ACS Sensors, 2(8), 1086–1102.

    Article  CAS  PubMed  Google Scholar 

  6. Bulbul, G., et al. (2018). Nanopipettes as monitoring probes for the single living cell: state of the art and future directions in molecular biology. Cell, 7(6), 55.

    Article  CAS  Google Scholar 

  7. Neves, M., & Martin-Yerga, D. (2018). Advanced nanoscale approaches to single-(bio)entity sensing and imaging. Biosensors (Basel), 8(4), 100.

    Article  CAS  Google Scholar 

  8. McGuire, A. F., Santoro, F., & Cui, B. (2018). Interfacing cells with vertical nanoscale devices: Applications and characterization. Annual Review of Analytical Chemistry (Palo Alto, California), 11(1), 101–126.

    Article  Google Scholar 

  9. Higgins, S. G., et al. (2020). High-aspect-ratio nanostructured surfaces as biological metamaterials. Advanced Materials, 32, e1903862.

    Article  PubMed  CAS  Google Scholar 

  10. Chiappini, C., et al. (2015). Mapping local cytosolic enzymatic activity in human esophageal mucosa with porous silicon nanoneedles. Advanced Materials, 27(35), 5147–5152.

    Article  CAS  PubMed  Google Scholar 

  11. Chiappini, C., et al. (2015). Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nature Materials, 14(5), 532–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hobbs, R. G., Petkov, N., & Holmes, J. D. (2012). Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chemistry of Materials, 24(11), 1975–1991.

    Article  CAS  Google Scholar 

  13. Silberberg, Y. R., et al. (2013). Evaluation of the actin cytoskeleton state using an antibody-functionalized nanoneedle and an AFM. Biosensors & Bioelectronics, 40(1), 3–9.

    Article  CAS  Google Scholar 

  14. He, G., et al. (2018). Fabrication of various structures of nanostraw arrays and their applications in gene delivery. Advanced Materials Interfaces, 5(10), 1701535.

    Article  CAS  Google Scholar 

  15. Meister, A., et al. (2009). FluidFM: Combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Letters, 9(6), 2501–2507.

    Article  CAS  PubMed  Google Scholar 

  16. Guillaume-Gentil, O., et al. (2014). Force-controlled manipulation of single cells: From AFM to FluidFM. Trends in Biotechnology, 32(7), 381–388.

    Article  CAS  PubMed  Google Scholar 

  17. van Oorschot, R., et al. (2015). A microfluidic AFM cantilever based dispensing and aspiration platform. EPJ Techniques and Instrumentation, 2(1), 4.

    Article  Google Scholar 

  18. Singhal, R., et al. (2011). Multifunctional carbon-nanotube cellular endoscopes. Nature Nanotechnology, 6(1), 57–64.

    Article  CAS  PubMed  Google Scholar 

  19. Shen, M., & Colombo, M. L. (2015). Electrochemical nanoprobes for the chemical detection of neurotransmitters. Analytical Methods, 7(17), 7095–7105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clausmeyer, J., & Schuhmann, W. (2016). Nanoelectrodes: Applications in electrocatalysis, single-cell analysis and high-resolution electrochemical imaging. Trac-Trends in Analytical Chemistry, 79, 46–59.

    Article  CAS  Google Scholar 

  21. Cao, Y., et al. (2017). Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring. Proceedings of the National Academy of Sciences of the United States of America, 114(10), E1866–E1874.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hansma, P. K., et al. (1989). The scanning ion-conductance microscope. Science, 243(4891), 641–643.

    Article  CAS  PubMed  Google Scholar 

  23. Page, A., Perry, D., & Unwin, P. R. (2017). Multifunctional scanning ion conductance microscopy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2200), 20160889.

    Article  Google Scholar 

  24. Sun, P., Laforge, F. O., & Mirkin, M. V. (2007). Scanning electrochemical microscopy in the 21st century. Physical Chemistry Chemical Physics, 9(7), 802–823.

    Article  CAS  PubMed  Google Scholar 

  25. Parton, R. G., & Simons, K. (2007). The multiple faces of caveolae. Nature Reviews. Molecular Cell Biology, 8(3), 185–194.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Z., et al. (2009). Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano, 3(12), 4110–4116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, W., et al. (2017). Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nature Nanotechnology, 12(8), 750–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gopal, S., et al. (2019). Porous silicon nanoneedles modulate endocytosis to deliver biological payloads. Advanced Materials, 31(12), e1806788.

    Article  PubMed  CAS  Google Scholar 

  29. Bancelin, S., et al. (2014). Determination of collagen fibril size via absolute measurements of second-harmonic generation signals. Nature Communications, 5, 1–8.

    Article  CAS  Google Scholar 

  30. Maurer, T., et al. (2018). Structural characterization of four different naturally occurring porcine collagen membranes suitable for medical applications. PLoS One, 13(10), e0205027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Buch-Manson, N., et al. (2015). Towards a better prediction of cell settling on nanostructure arrays-simple means to complicated ends. Advanced Functional Materials, 25(21), 3246–3255.

    Article  CAS  Google Scholar 

  32. Buch-Manson, N., et al. (2017). Mapping cell behavior across a wide range of vertical silicon nanocolumn densities. Nanoscale, 9(17), 5517–5527.

    Article  PubMed  Google Scholar 

  33. Obataya, I., et al. (2005). Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy. Biosensors & Bioelectronics, 20(8), 1652–1655.

    Article  CAS  Google Scholar 

  34. Xie, X., et al. (2013). Mechanical model of vertical nanowire cell penetration. Nano Letters, 13(12), 6002–6008.

    Article  CAS  PubMed  Google Scholar 

  35. Xu, A. M., et al. (2014). Quantification of nanowire penetration into living cells. Nature Communications, 5, 3613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Aalipour, A., et al. (2014). Plasma membrane and actin cytoskeleton as synergistic barriers to nanowire cell penetration. Langmuir, 30(41), 12362–12367.

    Article  CAS  PubMed  Google Scholar 

  37. Xie, X., et al. (2015). Determining the time window for dynamic nanowire cell penetration processes. ACS Nano, 9(12), 11667–11677.

    Article  CAS  PubMed  Google Scholar 

  38. He, G., et al. (2018). Hollow nanoneedle-electroporation system to extract intracellular protein repetitively and nondestructively. ACS Sensors, 3(9), 1675–1682.

    Article  CAS  PubMed  Google Scholar 

  39. Dipalo, M., et al. (2018). Cells adhering to 3D vertical nanostructures: Cell membrane reshaping without stable internalization. Nano Letters, 18(9), 6100–6105.

    Article  CAS  PubMed  Google Scholar 

  40. Duan, X., et al. (2011). Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nature Nanotechnology, 7(3), 174–179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Angle, M. R., et al. (2014). Penetration of cell membranes and synthetic lipid bilayers by nanoprobes. Biophysical Journal, 107(9), 2091–2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, J. H., et al. (2016). Spontaneous internalization of cell penetrating peptide-modified nanowires into primary neurons. Nano Letters, 16(2), 1509–1513.

    Article  CAS  PubMed  Google Scholar 

  43. Han, S. W., et al. (2005). Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness. Biochemical and Biophysical Research Communications, 332(3), 633–639.

    Article  CAS  PubMed  Google Scholar 

  44. Kawamura, R., et al. (2016). High efficiency penetration of antibody-immobilized nanoneedle thorough plasma membrane for in situ detection of cytoskeletal proteins in living cells. Journal of Nanobiotechnology, 14(1), 74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Simonis, M., et al. (2017). Survival rate of eukaryotic cells following electrophoretic nanoinjection. Scientific Reports, 7, 41277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, J., et al. (2018). The effects of surface topography of nanostructure arrays on cell adhesion. Physical Chemistry Chemical Physics, 20(35), 22946–22951.

    Article  CAS  PubMed  Google Scholar 

  47. Swaminathan, V., et al. (2011). Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Research, 71(15), 5075–5080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cross, S. E., et al. (2007). Nanomechanical analysis of cells from cancer patients. Nature Nanotechnology, 2(12), 780–783.

    Article  CAS  PubMed  Google Scholar 

  49. Handel, C., et al. (2015). Cell membrane softening in human breast and cervical cancer cells. New Journal of Physics, 17, 083008.

    Article  CAS  Google Scholar 

  50. Anderson, S. E., & Bau, H. H. (2015). Carbon nanoelectrodes for single-cell probing. Nanotechnology, 26(18), 185101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Novak, P., et al. (2009). Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nature Methods, 6(4), 279–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yum, K., et al. (2009). Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells. Nano Letters, 9(5), 2193–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shalek, A. K., et al. (2010). Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 1870–1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, X., et al. (2007). A cell nanoinjector based on carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 104(20), 8218–8222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Adam Seger, R., et al. (2012). Voltage controlled nano-injection system for single-cell surgery. Nanoscale, 4(19), 5843–5846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peer, E., et al. (2012). Hollow nanoneedle array and its utilization for repeated administration of biomolecules to the same cells. ACS Nano, 6(6), 4940–4946.

    Article  CAS  PubMed  Google Scholar 

  57. Loh, O., et al. (2009). Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds. Small, 5(14), 1667–1674.

    Article  CAS  PubMed  Google Scholar 

  58. Ying, Y. L., et al. (2017). Advanced electroanalytical chemistry at nanoelectrodes. Chemical Science, 8(5), 3338–3348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hennig, S., et al. (2015). Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes. Nano Letters, 15(2), 1374–1381.

    Article  CAS  PubMed  Google Scholar 

  60. Yang, R., et al. (2018). Monoclonal cell line generation and CRISPR/Cas9 manipulation via single-cell electroporation. Small, 14(12), e1702495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kang, W., et al. (2013). Nanofountain probe electroporation (NFP-E) of single cells. Nano Letters, 13(6), 2448–2457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Giraldo-Vela, J. P., et al. (2015). Single-cell detection of mRNA expression using nanofountain-probe electroporated molecular beacons. Small, 11(20), 2386–2391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tan, W., Wang, K., & Drake, T. J. (2004). Molecular beacons. Current Opinion in Chemical Biology, 8(5), 547–553.

    Article  CAS  PubMed  Google Scholar 

  64. Mereiter, S., et al. (2019). Glycosylation in the era of cancer-targeted therapy: Where are we heading? Cancer Cell, 36(1), 6–16.

    Article  CAS  PubMed  Google Scholar 

  65. Xie, X., et al. (2013). Nanostraw-electroporation system for highly efficient intracellular delivery and transfection. ACS Nano, 7(5), 4351–4358.

    Article  CAS  PubMed  Google Scholar 

  66. Caprettini, V., et al. (2017). Soft electroporation for delivering molecules into tightly adherent mammalian cells through 3D hollow nanoelectrodes. Scientific Reports, 7(1), 8524.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Xu, A. M., et al. (2017). Direct intracellular delivery of cell-impermeable probes of protein glycosylation by using nanostraws. Chembiochem, 18(7), 623–628.

    Article  CAS  PubMed  Google Scholar 

  68. Shen, X., et al. (2019). Biodegradable nanosyringes for intracellular amplification-based dual-diagnosis and gene therapy in single living cells. Chemical Science, 10(24), 6113–6119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hansel, C. S., et al. (2019). Nanoneedle-mediated stimulation of cell mechanotransduction machinery. ACS Nano, 13(3), 2913–2926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pandey, S., et al. (2013). Gold nanorods mediated controlled release of doxorubicin: Nano-needles for efficient drug delivery. Journal of Materials Science. Materials in Medicine, 24(7), 1671–1681.

    Article  CAS  PubMed  Google Scholar 

  71. Pan, W., et al. (2013). Multiplexed detection and imaging of intracellular mRNAs using a four-color nanoprobe. Analytical Chemistry, 85(21), 10581–10588.

    Article  CAS  PubMed  Google Scholar 

  72. Pan, W., et al. (2015). Simultaneous visualization of multiple mRNAs and matrix metalloproteinases in living cells using a fluorescence nanoprobe. Chemistry, 21(16), 6070–6073.

    Article  CAS  PubMed  Google Scholar 

  73. Hong, Y., et al. (2014). Molecular recognition of proteolytic activity in metastatic cancer cells using fluorogenic gold nanoprobes. Biosensors & Bioelectronics, 57, 171–178.

    Article  CAS  Google Scholar 

  74. Lee, H., & Kim, Y. P. (2015). Fluorescent and bioluminescent nanoprobes for in vitro and in vivo detection of matrix metalloproteinase activity. BMB Reports, 48(6), 313–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sun, L., et al. (2018). MMP-2-responsive fluorescent nanoprobes for enhanced selectivity of tumor cell uptake and imaging. Biomaterials Science, 6(10), 2619–2626.

    Article  CAS  PubMed  Google Scholar 

  76. Zhan, R., et al. (2020). An Au-Se nanoprobe for the evaluation of the invasive potential of breast cancer cells via imaging the sequential activation of uPA and MMP-2. Analyst, 145(3), 1008–1013.

    Article  CAS  PubMed  Google Scholar 

  77. Tavallaie, R., et al. (2018). Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood. Nature Nanotechnology, 13(11), 1066–1071.

    Article  CAS  PubMed  Google Scholar 

  78. Li, C., et al. (2020). Intracellular sensors based on carbonaceous nanomaterials: A review. Journal of the Electrochemical Society, 167(3), 037540.

    Article  CAS  Google Scholar 

  79. Navas-Moreno, M., et al. (2017). Nanoparticles for live cell microscopy: A surface-enhanced Raman scattering perspective. Scientific Reports, 7(1), 4471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bruzas, I., et al. (2018). Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: Sensing and beyond. Analyst, 143(17), 3990–4008.

    Article  CAS  PubMed  Google Scholar 

  81. Szekeres, G. P., & Kneipp, J. (2019). SERS probing of proteins in gold nanoparticle agglomerates. Frontiers in Chemistry, 7, 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hanif, S., et al. (2017). Organic cyanide decorated SERS active nanopipettes for quantitative detection of hemeproteins and Fe(3+) in single cells. Analytical Chemistry, 89(4), 2522–2530.

    Article  CAS  PubMed  Google Scholar 

  83. Huang, J. A., et al. (2019). On-demand intracellular delivery of single particles in single cells by 3D hollow nanoelectrodes. Nano Letters, 19(2), 722–731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Nguyen, T. D., et al. (2019). Nanostars on nanopipette tips: A Raman probe for quantifying oxygen levels in hypoxic single cells and tumours. Angewandte Chemie (International Ed. in English), 58(9), 2710–2714.

    Article  CAS  Google Scholar 

  85. Yum, K., et al. (2011). Biofunctionalized nanoneedles for the direct and site-selective delivery of probes into living cells. Biochimica et Biophysica Acta, 1810(3), 330–338.

    Article  CAS  PubMed  Google Scholar 

  86. Kihara, T., et al. (2009). Development of a method to evaluate caspase-3 activity in a single cell using a nanoneedle and a fluorescent probe. Biosensors & Bioelectronics, 25(1), 22–27.

    Article  CAS  Google Scholar 

  87. Na, Y. R., et al. (2013). Probing enzymatic activity inside living cells using a nanowire-cell “sandwich” assay. Nano Letters, 13(1), 153–158.

    Article  CAS  PubMed  Google Scholar 

  88. Kihara, T., et al. (2010). Development of a novel method to detect intrinsic mRNA in a living cell by using a molecular beacon-immobilized nanoneedle. Biosensors & Bioelectronics, 26(4), 1449–1454.

    Article  CAS  Google Scholar 

  89. Matsumoto, D., et al. (2015). Oscillating high-aspect-ratio monolithic silicon nanoneedle array enables efficient delivery of functional bio-macromolecules into living cells. Scientific Reports, 5, 15325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. White, K. A., Grillo-Hill, B. K., & Barber, D. L. (2017). Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. Journal of Cell Science, 130(4), 663–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Szpaderska, A. M., & Frankfater, A. (2001). An intracellular form of cathepsin B contributes to invasiveness in cancer. Cancer Research, 61(8), 3493–3500.

    CAS  PubMed  Google Scholar 

  92. Swisher, L. Z., et al. (2015). Quantitative electrochemical detection of cathepsin B activity in breast cancer cell lysates using carbon nanofiber nanoelectrode arrays toward identification of cancer formation. Nanomedicine, 11(7), 1695–1704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. DeBerardinis, R. J., & Chandel, N. S. (2016). Fundamentals of cancer metabolism. Science Advances, 2(5), e1600200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lin, T. E., et al. (2018). Electrochemical imaging of cells and tissues. Chemical Science, 9(20), 4546–4554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fan, Y., Han, C., & Zhang, B. (2016). Recent advances in the development and application of nanoelectrodes. Analyst, 141(19), 5474–5487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pan, R., et al. (2016). Nanokit for single-cell electrochemical analyses. Proceedings of the National Academy of Sciences of the United States of America, 113(41), 11436–11440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pan, R., & Jiang, D. (2019). Nanokits for the electrochemical quantification of enzyme activity in single living cells. Methods in Enzymology, 628, 173–189.

    Article  CAS  PubMed  Google Scholar 

  98. Xu, H., et al. (2019). Phosphate assay kit in one cell for electrochemical detection of intracellular phosphate ions at single cells. Frontiers in Chemistry, 7, 360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qian, R. C., Lv, J., & Long, Y. T. (2018). Ultrafast mapping of subcellular domains via nanopipette-based electroosmotically modulated delivery into a single living cell. Analytical Chemistry, 90(22), 13744–13750.

    Article  CAS  PubMed  Google Scholar 

  100. Pernicova, I., & Korbonits, M. (2014). Metformin--mode of action and clinical implications for diabetes and cancer. Nature Reviews. Endocrinology, 10(3), 143–156.

    Article  CAS  PubMed  Google Scholar 

  101. Ozel, R. E., et al. (2015). Single-cell intracellular nano-pH probes. RSC Advances, 5(65), 52436–52443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee, H. S., et al. (2012). Reversible swelling of chitosan and quaternary ammonium modified chitosan brush layers: Effect of pH and counter anion size and functionality. Journal of Materials Chemistry, 22(37), 19605–19616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cervera, J., et al. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706.

    Article  PubMed  CAS  Google Scholar 

  104. Umehara, S., et al. (2009). Label-free biosensing with functionalized nanopipette probes. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4611–4616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nascimento, R. A., et al. (2016). Single cell “glucose nanosensor” verifies elevated glucose levels in individual cancer cells. Nano Letters, 16(2), 1194–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liberti, M. V., & Locasale, J. W. (2016). The Warburg effect: How does it benefit cancer cells? Trends in Biochemical Sciences, 41(3), 211–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Smith, S. K., et al. (2018). Carbon-fiber microbiosensor for monitoring rapid lactate fluctuations in brain tissue using fast-scan cyclic voltammetry. Analytical Chemistry, 90(21), 12994–12999.

    Article  CAS  PubMed  Google Scholar 

  108. Actis, P., et al. (2014). Electrochemical nanoprobes for single-cell analysis. ACS Nano, 8(1), 875–884.

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, Y., et al. (2016). Spearhead nanometric field-effect transistor sensors for single-cell analysis. ACS Nano, 10(3), 3214–3221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ying, Y. L., et al. (2018). Asymmetric nanopore electrode-based amplification for electron transfer imaging in live cells. Journal of the American Chemical Society, 140(16), 5385–5392.

    Article  CAS  PubMed  Google Scholar 

  111. Huang, F., et al. (2018). Photoactivated specific mRNA detection in single living cells by coupling “signal-on” fluorescence and “signal-off” electrochemical signals. Nano Letters, 18(8), 5116–5123.

    Article  CAS  PubMed  Google Scholar 

  112. Dhar, S. K., et al. (2011). Manganese superoxide dismutase is a p53-regulated gene that switches cancers between early and advanced stages. Cancer Research, 71(21), 6684–6695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Moloney, J. N., & Cotter, T. G. (2018). ROS signalling in the biology of cancer. Seminars in Cell & Developmental Biology, 80, 50–64.

    Article  CAS  Google Scholar 

  114. Wang, K., et al. (2019). Targeting metabolic-redox circuits for cancer therapy. Trends in Biochemical Sciences, 44(5), 401–414.

    Article  CAS  PubMed  Google Scholar 

  115. Arbault, S., et al. (1995). Monitoring an oxidative stress mechanism at a single human fibroblast. Analytical Chemistry, 67(19), 3382–3390.

    Article  CAS  PubMed  Google Scholar 

  116. Sun, P., et al. (2008). Nanoelectrochemistry of mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 105(2), 443–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ozel, R. E., et al. (2018). Functionalized quartz nanopipette for intracellular superoxide sensing: A tool for monitoring reactive oxygen species levels in single living cell. ACS Sensors, 3(7), 1316–1321.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, Y., et al. (2013). ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Research, 23(7), 898–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, Y., et al. (2012). Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages. Proceedings of the National Academy of Sciences of the United States of America, 109(29), 11534–11539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Marquitan, M., et al. (2016). Intracellular hydrogen peroxide detection with functionalised nanoelectrodes. ChemElectroChem, 3(12), 2125–2129.

    Article  CAS  Google Scholar 

  121. Rawson, F. J., et al. (2015). Fast, ultrasensitive detection of reactive oxygen species using a carbon nanotube based-electrocatalytic intracellular sensor. ACS Applied Materials & Interfaces, 7(42), 23527–23537.

    Article  CAS  Google Scholar 

  122. Ding, S., et al. (2020). Sensitive and selective measurement of hydroxyl radicals at subcellular level with tungsten nanoelectrodes. Analytical Chemistry, 92(3), 2543–2549.

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, X. W., et al. (2017). Real-time intracellular measurements of ROS and RNS in living cells with single core-shell nanowire electrodes. Angewandte Chemie (International Ed. in English), 56(42), 12997–13000.

    Article  CAS  Google Scholar 

  124. Hu, K., et al. (2019). Electrochemical measurements of reactive oxygen and nitrogen species inside single phagolysosomes of living macrophages. Journal of the American Chemical Society, 141(11), 4564–4568.

    Article  CAS  PubMed  Google Scholar 

  125. Li, X., et al. (2015). Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. Angewandte Chemie (International Ed. in English), 54(41), 11978–11982.

    Article  CAS  Google Scholar 

  126. Li, Y., et al. (2017). Direct electrochemical measurements of reactive oxygen and nitrogen species in nontransformed and metastatic human breast cells. Journal of the American Chemical Society, 139(37), 13055–13062.

    Article  CAS  PubMed  Google Scholar 

  127. Clapham, D. E. (2007). Calcium signaling. Cell, 131(6), 1047–1058.

    Article  CAS  PubMed  Google Scholar 

  128. Son, D., et al. (2011). Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions. ACS Nano, 5(5), 3888–3895.

    Article  CAS  PubMed  Google Scholar 

  129. Petronek, M. S., et al. (2019). Linking cancer metabolic dysfunction and genetic instability through the lens of iron metabolism. Cancers (Basel), 11(8), 1077.

    Article  CAS  Google Scholar 

  130. Bulbul, G., et al. (2019). Employment of iron-binding protein from Haemophilus influenzae in functional nanopipettes for iron monitoring. ACS Chemical Neuroscience, 10(4), 1970–1977.

    Article  CAS  PubMed  Google Scholar 

  131. Kim, H. S., Kim, Y. J., & Seo, Y. R. (2015). An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. Journal of Cancer Prevention, 20(4), 232–240.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Leyssens, L., et al. (2017). Cobalt toxicity in humans-A review of the potential sources and systemic health effects. Toxicology, 387, 43–56.

    Article  CAS  PubMed  Google Scholar 

  133. Actis, P., et al. (2011). Voltage-controlled metal binding on polyelectrolyte-functionalized nanopores. Langmuir, 27(10), 6528–6533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Actis, P., et al. (2012). Copper sensing with a prion protein modified nanopipette. RSC Advances, 2(31), 11638–11640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sa, N., Fu, Y., & Baker, L. A. (2010). Reversible cobalt ion binding to imidazole-modified nanopipettes. Analytical Chemistry, 82(24), 9963–9966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Miao, R., et al. (2014). Silicon nanowire-based fluorescent nanosensor for complexed Cu2+ and its bioapplications. Nano Letters, 14(6), 3124–3129.

    Article  CAS  PubMed  Google Scholar 

  137. Abbott, J., et al. (2020). A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nature Biomedical Engineering, 4(2), 232–241.

    Article  CAS  PubMed  Google Scholar 

  138. Abbott, J., et al. (2017). CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nature Nanotechnology, 12(5), 460–466.

    Article  CAS  PubMed  Google Scholar 

  139. Robinson, J. T., et al. (2012). Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nature Nanotechnology, 7(3), 180–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Xie, C., et al. (2012). Intracellular recording of action potentials by nanopillar electroporation. Nature Nanotechnology, 7(3), 185–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lin, Z. C., et al. (2017). Accurate nanoelectrode recording of human pluripotent stem cell-derived cardiomyocytes for assaying drugs and modeling disease. Microsystems & Nanoengineering, 3, 16080.

    Article  CAS  Google Scholar 

  142. Staufer, O., et al. (2019). Adhesion stabilized en masse intracellular electrical recordings from multicellular assemblies. Nano Letters, 19(5), 3244–3255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Caprettini, V., et al. (2018). Enhanced Raman investigation of cell membrane and intracellular compounds by 3D plasmonic nanoelectrode arrays. Advanced Science (Weinheim), 5(12), 1800560.

    Article  CAS  Google Scholar 

  144. Deville, S. S., & Cordes, N. (2019). The extracellular, cellular, and nuclear stiffness, a trinity in the cancer resistome-a review. Frontiers in Oncology, 9, 1376.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Liu, C. Y., et al. (2015). Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget, 6(18), 15966–15983.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Silberberg, Y. R., et al. (2014). Detection of microtubules in vivo using antibody-immobilized nanoneedles. Journal of Bioscience and Bioengineering, 117(1), 107–112.

    Article  CAS  PubMed  Google Scholar 

  147. Yamagishi, A., et al. (2019). The structural function of nestin in cell body softening is correlated with cancer cell metastasis. International Journal of Biological Sciences, 15(7), 1546–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mieda, S., et al. (2012). Mechanical force-based probing of intracellular proteins from living cells using antibody-immobilized nanoneedles. Biosensors & Bioelectronics, 31(1), 323–329.

    Article  CAS  Google Scholar 

  149. Wang, Z. X., et al. (2015). Interrogation of cellular innate immunity by diamond-nanoneedle-assisted intracellular molecular fishing. Nano Letters, 15(10), 7058–7063.

    Article  PubMed  CAS  Google Scholar 

  150. Choi, S., et al. (2016). Probing protein complexes inside living cells using a silicon nanowire-based pull-down assay. Nanoscale, 8(22), 11380–11384.

    Article  CAS  PubMed  Google Scholar 

  151. Cao, Y., et al. (2018). Universal intracellular biomolecule delivery with precise dosage control. Science Advances, 4(10), eaat8131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhang, B., et al. (2019). Nanostraw membrane stamping for direct delivery of molecules into adhesive cells. Scientific Reports, 9(1), 6806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Yang, Z., et al. (2014). Molecular extraction in single live cells by sneaking in and out magnetic nanomaterials. Proceedings of the National Academy of Sciences of the United States of America, 111(30), 10966–10971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. He, G., et al. (2019). Multifunctional branched nanostraw-electroporation platform for intracellular regulation and monitoring of circulating tumor cells. Nano Letters, 19(10), 7201–7209.

    Article  CAS  PubMed  Google Scholar 

  155. Wen, R., et al. (2019). Intracellular delivery and sensing system based on electroplated conductive nanostraw arrays. ACS Applied Materials & Interfaces, 11(47), 43936–43948.

    Article  CAS  Google Scholar 

  156. Munz, M., Baeuerle, P. A., & Gires, O. (2009). The emerging role of EpCAM in cancer and stem cell signaling. Cancer Research, 69(14), 5627–5629.

    Article  CAS  PubMed  Google Scholar 

  157. Nawarathna, D., et al. (2011). Targeted messenger RNA profiling of transfected breast cancer gene in a living cell. Analytical Biochemistry, 408(2), 342–344.

    Article  CAS  PubMed  Google Scholar 

  158. Nawarathna, D., Turan, T., & Wickramasinghe, H. K. (2009). Selective probing of mRNA expression levels within a living cell. Applied Physics Letters, 95(8), 83117.

    Article  CAS  PubMed  Google Scholar 

  159. Actis, P., et al. (2014). Compartmental genomics in living cells revealed by single-cell nanobiopsy. ACS Nano, 8(1), 546–553.

    Article  CAS  PubMed  Google Scholar 

  160. Toth, E. N., et al. (2018). Single-cell nanobiopsy reveals compartmentalization of mRNAs within neuronal cells. The Journal of Biological Chemistry, 293(13), 4940–4951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Nashimoto, Y., et al. (2016). Evaluation of mRNA localization using double barrel scanning ion conductance microscopy. ACS Nano, 10(7), 6915–6922.

    Article  CAS  PubMed  Google Scholar 

  162. Kashyap, A., et al. (2016). Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe. Scientific Reports, 6, 29579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Guillaume-Gentil, O., et al. (2016). Tunable single-cell extraction for molecular analyses. Cell, 166(2), 506–516.

    Article  CAS  PubMed  Google Scholar 

  164. Duncan, K. D., Fyrestam, J., & Lanekoff, I. (2019). Advances in mass spectrometry based single-cell metabolomics. Analyst, 144(3), 782–793.

    Article  CAS  PubMed  Google Scholar 

  165. Gong, X., et al. (2014). Single cell analysis with probe ESI-mass spectrometry: Detection of metabolites at cellular and subcellular levels. Analytical Chemistry, 86(8), 3809–3816.

    Article  CAS  PubMed  Google Scholar 

  166. Yin, R., Prabhakaran, V., & Laskin, J. (2018). Quantitative extraction and mass spectrometry analysis at a single-cell level. Analytical Chemistry, 90(13), 7937–7945.

    Article  CAS  PubMed  Google Scholar 

  167. Yin, R., Prabhakaran, V., & Laskin, J. (2019). Electroosmotic extraction coupled to mass spectrometry analysis of metabolites in live cells. Methods in Enzymology, 628, 293–307.

    Article  CAS  PubMed  Google Scholar 

  168. Guillaume-Gentil, O., et al. (2017). Single-cell mass spectrometry of metabolites extracted from live cells by fluidic force microscopy. Analytical Chemistry, 89(9), 5017–5023.

    Article  CAS  PubMed  Google Scholar 

  169. Masujima, T. (2009). Live single-cell mass spectrometry. Analytical Sciences, 25(8), 953–960.

    Article  CAS  PubMed  Google Scholar 

  170. Aerts, J. T., et al. (2014). Patch clamp electrophysiology and capillary electrophoresis-mass spectrometry metabolomics for single cell characterization. Analytical Chemistry, 86(6), 3203–3208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang, L., & Vertes, A. (2015). Energy charge, redox state, and metabolite turnover in single human hepatocytes revealed by capillary microsampling mass spectrometry. Analytical Chemistry, 87(20), 10397–10405.

    Article  CAS  PubMed  Google Scholar 

  172. Esaki, T., & Masujima, T. (2015). Fluorescence probing live single-cell mass spectrometry for direct analysis of organelle metabolism. Analytical Sciences, 31(12), 1211–1213.

    Article  CAS  PubMed  Google Scholar 

  173. Zhao, Y. L., et al. (2019). Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nature Nanotechnology, 14(8), 783–790.

    Article  CAS  PubMed  Google Scholar 

  174. Tullii, G., et al. (2019). High-aspect-ratio semiconducting polymer pillars for 3D cell cultures. ACS Applied Materials & Interfaces, 11(31), 28125–28137.

    Article  CAS  Google Scholar 

  175. Li, Y. C., Liu, X. S., & Li, B. J. (2019). Single-cell biomagnifier for optical nanoscopes and nanotweezers. Light-Science & Applications, 8, 1–12.

    Article  CAS  Google Scholar 

  176. Huang, Q., et al. (2017). Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon-dielectric interactions. Nature Photonics, 11(6), 352–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jayant, K., et al. (2019). Flexible nanopipettes for minimally invasive intracellular electrophysiology in vivo. Cell Reports, 26(1), 266–278 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kim, H., et al. (2018). Flexible elastomer patch with vertical silicon nanoneedles for intracellular and intratissue nanoinjection of biomolecules. Science Advances, 4(11), eaau6972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kim, W., et al. (2007). Interfacing silicon nanowires with mammalian cells. Journal of the American Chemical Society, 129(23), 7228–7229.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Stuart Higgins (Imperial College, London) for expert advice and invaluable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molly M. Stevens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sero, J.E., Stevens, M.M. (2021). Nanoneedle-Based Materials for Intracellular Studies. In: Fontana, F., Santos, H.A. (eds) Bio-Nanomedicine for Cancer Therapy. Advances in Experimental Medicine and Biology, vol 1295. Springer, Cham. https://doi.org/10.1007/978-3-030-58174-9_9

Download citation

Publish with us

Policies and ethics