Skip to main content

Efficient Signatures on Randomizable Ciphertexts

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12238))

Included in the following conference series:

Abstract

Randomizable encryption lets anyone randomize a ciphertext so it is distributed like a fresh encryption of the same plaintext. Signatures on randomizable ciphertexts (SoRC), introduced by Blazy et al. (PKC’11), let one adapt a signature on a ciphertext to a randomization of the latter. Since signatures can only be adapted to ciphertexts that encrypt the same message as the signed ciphertext, signatures obliviously authenticate plaintexts. SoRC have been used as a building block in e-voting, blind signatures and (delegatable) anonymous credentials.

We observe that SoRC can be seen as signatures on equivalence classes (JoC’19), another primitive with many applications to anonymous authentication, and that SoRC provide better anonymity guarantees. We first strengthen the unforgeability notion for SoRC and then give a scheme that provably achieves it in the generic group model. Signatures in our scheme consist of 4 bilinear-group elements, which is considerably more efficient than prior schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Considering an equation of rational functions over this quotient can also be seen as simply setting \(x_0= x_1=0\). Everything we infer about the coefficients from these modified equations is also valid for the original equation, since these must hold for all values \((x_0,x_1,s_1,\ldots ,s_k)\) and so in particular for \((0,0,s_1,\ldots ,s_k)\).

    Yet another interpretation when equating coefficients in equations modulo \((x_0,x_1)\) is that one equates coefficients only of monomials that do not contain \(x_0\) or \(x_1\).

References

  1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_12

    Chapter  Google Scholar 

  2. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_37

    Chapter  MATH  Google Scholar 

  3. Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_34

    Chapter  Google Scholar 

  4. Deschamps, C., Warusfel, A., Moulin, F.: Mathématiques 1ère année: Cours et exercices corrigés. Editions Dunod (1998)

    Google Scholar 

  5. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_7

    Chapter  Google Scholar 

  6. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_20

    Chapter  Google Scholar 

  7. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomizable ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_25

    Chapter  Google Scholar 

  8. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Short blind signatures. J. Comput. Secur. 21(5), 627–661 (2013)

    Article  Google Scholar 

  9. Backes, M., Hanzlik, L., Kluczniak, K., Schneider, J.: Signatures with flexible public key: introducing equivalence classes for public keys. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 405–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_14

    Chapter  Google Scholar 

  10. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 1087–1098. ACM Press, November 2013

    Google Scholar 

  11. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38

    Chapter  Google Scholar 

  12. Brands, S.: Rethinking Public-Key Infrastructures and Digital Certificates: Building in Privacy. MIT Press, Cambridge (2000)

    Book  Google Scholar 

  13. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_11

    Chapter  Google Scholar 

  14. Chaidos, P., Cortier, V., Fuchsbauer, G., Galindo, D.: BeleniosRF: a non-interactive receipt-free electronic voting scheme. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1614–1625. ACM Press, October 2016

    Google Scholar 

  15. Cortier, V., Filipiak, A., Lallemand, J.: BeleniosVS: secrecy and verifiability against a corrupted voting device. In: 2019 IEEE 32nd Computer Security Foundations Symposium (CSF), pp. 367–36714. IEEE (2019)

    Google Scholar 

  16. Camenisch, J., Groth, J.: Group signatures: better efficiency and new theoretical aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30598-9_9

    Chapter  Google Scholar 

  17. Cortier, V., Gaudry, P., Glondu, S.: Belenios: a simple private and verifiable electronic voting system. In: Guttman, J.D., Landwehr, C.E., Meseguer, J., Pavlovic, D. (eds.) Foundations of Security, Protocols, and Equational Reasoning. LNCS, vol. 11565, pp. 214–238. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19052-1_14

    Chapter  MATH  Google Scholar 

  18. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_20

    Chapter  Google Scholar 

  19. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_4

    Chapter  Google Scholar 

  20. Crites, E.C., Lysyanskaya, A.: Delegatable anonymous credentials from mercurial signatures. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 535–555. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_27

    Chapter  Google Scholar 

  21. Damgård, I., Haagh, H., Orlandi, C.: Access control encryption: enforcing information flow with cryptography. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 547–576. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_21

    Chapter  MATH  Google Scholar 

  22. Derler, D., Hanser, C., Slamanig, D.: A new approach to efficient revocable attribute-based anonymous credentials. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 57–74. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27239-9_4

    Chapter  MATH  Google Scholar 

  23. Derler, D., Slamanig, D.: Highly-efficient fully-anonymous dynamic group signatures. In: Kim, J., Ahn, G.-J., Kim, S., Kim, Y., López, J., Kim, T. (eds.) ASIACCS 18, pp. 551–565. ACM Press, April 2018

    Google Scholar 

  24. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

    Article  MathSciNet  Google Scholar 

  25. Fuchsbauer, G., Gay, R.: Weakly secure equivalence-class signatures from standard assumptions. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 153–183. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_6

    Chapter  Google Scholar 

  26. Fuchsbauer, G., Gay, R., Kowalczyk, L., Orlandi, C.: Access control encryption for equality, comparison, and more. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 88–118. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_4

    Chapter  Google Scholar 

  27. Fuchsbauer, G., Hanser, C., Kamath, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model from weaker assumptions. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 391–408. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_21

    Chapter  Google Scholar 

  28. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_12

    Chapter  MATH  Google Scholar 

  29. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes and constant-size anonymous credentials. J. Cryptology 32(2), 498–546 (2019)

    Article  MathSciNet  Google Scholar 

  30. Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_14

    Chapter  Google Scholar 

  31. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

    Chapter  Google Scholar 

  32. Hébant, C., Phan, D.H., Pointcheval, D.: Linearly-homomorphic signatures and scalable mix-nets. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 597–627. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_21

    Chapter  Google Scholar 

  33. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_26

    Chapter  Google Scholar 

  34. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_26

    Chapter  Google Scholar 

  35. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM (JACM) 27(4), 701–717 (1980)

    Article  MathSciNet  Google Scholar 

  36. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18

    Chapter  Google Scholar 

  37. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_7

    Chapter  Google Scholar 

Download references

Acknowledgement

This is work is funded in part by the MSR–Inria Joint Centre. Fuchsbauer is supported by the Vienna Science and Technology Fund (WWTF) through project VRG18-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balthazar Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bauer, B., Fuchsbauer, G. (2020). Efficient Signatures on Randomizable Ciphertexts. In: Galdi, C., Kolesnikov, V. (eds) Security and Cryptography for Networks. SCN 2020. Lecture Notes in Computer Science(), vol 12238. Springer, Cham. https://doi.org/10.1007/978-3-030-57990-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57990-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57989-0

  • Online ISBN: 978-3-030-57990-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics