Skip to main content

Interpretable Concept-Based Classification with Shapley Values

  • Conference paper
  • First Online:
Ontologies and Concepts in Mind and Machine (ICCS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12277))

Included in the following conference series:

Abstract

Among the family of rule-based classification models, there are classifiers based on conjunctions of binary attributes. For example, JSM-method of automatic reasoning (named after John Stuart Mill) was formulated as a classification technique in terms of intents of formal concepts as classification hypotheses. These JSM-hypotheses already represent interpretable model since the respective conjunctions of attributes can be easily read by decision makers and thus provide plausible reasons for model prediction. However, from the interpretable machine learning viewpoint, it is advisable to provide decision makers with importance (or contribution) of individual attributes to classification of a particular object, which may facilitate explanations by experts in various domains with high-cost errors like medicine or finance. To this end, we use the notion of Shapley value from cooperative game theory, also popular in machine learning. We provide the reader with theoretical results, basic examples and attribution of JSM-hypotheses by means of Shapley value on real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Basic FCA notions needed for this contribution can be found in one of these books [12, 13].

  2. 2.

    This concise way of representation is called reduced labelling  [13].

  3. 3.

    The workshops on Interpretable Machine Learning: https://sites.google.com/view/whi2018 and https://sites.google.com/view/hill2019.

  4. 4.

    https://archive.ics.uci.edu/ml/datasets/zoo.

  5. 5.

    There are no undetermined examples here since we would like to test decision explainability by means of Shapley values rather than to test prediction accuracy of the JSM-method.

  6. 6.

    All the non-zero values are given with precision up to the third significant sign after decimal point.

  7. 7.

    The full version of this script along with the used datasets will be available at https://github.com/dimachine/Shap4JSM.

References

  1. Blinova, V.G., Dobrynin, D.A., Finn, V.K., Kuznetsov, S.O., Pankratova, E.S.: Toxicology analysis by means of the JSM-method. Bioinformatics 19(10), 1201–1207 (2003)

    Article  Google Scholar 

  2. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794 (2016)

    Google Scholar 

  3. Dubois, V., Quafafou, M.: Concept learning with approximation: rough version spaces. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 239–246. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45813-1_31

    Chapter  MATH  Google Scholar 

  4. Faigle, U., Grabisch, M., Jiménez-Losada, A., Ordóñez, M.: Games on concept lattices: Shapley value and core. Discrete Appl. Math. 198, 29–47 (2016)

    Article  MathSciNet  Google Scholar 

  5. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 37–54 (1996)

    Google Scholar 

  6. Finn, V.: On machine-oriented formalization of plausible reasoning in F. Bacon-J.S.Mill Style. Semiotika i Informatika 20, 35–101 (1983). (in Russian)

    MATH  Google Scholar 

  7. Fürnkranz, J., Gamberger, D., Lavrac, N.: Foundations of Rule Learning. Cognitive Technologies. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-75197-7

    Book  MATH  Google Scholar 

  8. Harras, G.: Concepts in linguistics – concepts in natural language. In: Ganter, B., Mineau, G.W. (eds.) ICCS-ConceptStruct 2000. LNCS (LNAI), vol. 1867, pp. 13–26. Springer, Heidelberg (2000). https://doi.org/10.1007/10722280_2

    Chapter  Google Scholar 

  9. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44583-8_10

    Chapter  Google Scholar 

  10. Ganter, B., Kuznetsov, S.O.: Hypotheses and version spaces. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS-ConceptStruct 2003. LNCS (LNAI), vol. 2746, pp. 83–95. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45091-7_6

    Chapter  Google Scholar 

  11. Ganter, B., Kuznetsov, S.O.: Scale coarsening as feature selection. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 217–228. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78137-0_16

    Chapter  Google Scholar 

  12. Ganter, B., Obiedkov, S.A.: Conceptual Exploration. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49291-8

    Book  MATH  Google Scholar 

  13. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  14. Ignatov, D.I., Zhuk, R., Konstantinova, N.: Learning hypotheses from triadic labeled data. In: 2014 IEEE/WIC/ACM International Joint Conference on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2014, vol. I, pp. 474–480 (2014)

    Google Scholar 

  15. Kuznetsov, S.O.: Galois connections in data analysis: contributions from the Soviet era and modern Russian research. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 196–225. Springer, Heidelberg (2005). https://doi.org/10.1007/11528784_11

    Chapter  Google Scholar 

  16. Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1–4), 101–115 (2007)

    Article  MathSciNet  Google Scholar 

  17. Kuznetsov, S.O., Samokhin, M.V.: Learning closed sets of labeled graphs for chemical applications. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 190–208. Springer, Heidelberg (2005). https://doi.org/10.1007/11536314_12

    Chapter  Google Scholar 

  18. Kuznetsov, S.: JSM-method as a machine learning method. Itogi Nauki i Tekhniki, ser. Informatika 15, 17–53 (1991). (in Russian)

    Google Scholar 

  19. Kuznetsov, S.: Mathematical aspects of concept analysis. J. Math. Sci. 80(2), 1654–1698 (1996)

    Article  MathSciNet  Google Scholar 

  20. Lipton, Z.C.: The mythos of model interpretability. Commun. ACM 61(10), 36–43 (2018)

    Article  Google Scholar 

  21. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: I.G., et al. (ed.) Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774. Curran Associates, Inc. (2017)

    Google Scholar 

  22. Maafa, K., Nourine, L., Radjef, M.S.: Algorithms for computing the Shapley value of cooperative games on lattices. Discrete Appl. Math. 249, 91–105 (2018)

    Article  MathSciNet  Google Scholar 

  23. Mitchell, T.M.: Version spaces: a candidate elimination approach to rule learning. In: Reddy, R. (ed.) Proceedings of the 5th International Joint Conference on Artificial Intelligence, 1977, pp. 305–310. William Kaufmann (1977)

    Google Scholar 

  24. Molnar, C.: Interpretable Machine Learning (2019). https://christophm.github.io/interpretable-ml-book/

  25. Shapley, L.S.: A value for n-person games. In: Contributions to the Theory of Games, vol. 2, no. 28, pp. 307–317 (1953)

    Google Scholar 

  26. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2013). https://doi.org/10.1007/s10115-013-0679-x

    Article  Google Scholar 

Download references

Acknowledgements

The study was implemented in the framework of the Basic Research Program at the National Research University Higher School of Economics, and funded by the Russian Academic Excellence Project ‘5-100’. The first author was also supported by Russian Science Foundation under grant 17-11-01276 at St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Russia. The first author would like to thank Prof. Fuad Aleskerov for the inspirational lectures on Collective Choice and Alexey Dral’ from BigData Team for pointing to Shapley values as an explainable Machine Learning tool.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry I. Ignatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ignatov, D.I., Kwuida, L. (2020). Interpretable Concept-Based Classification with Shapley Values. In: Alam, M., Braun, T., Yun, B. (eds) Ontologies and Concepts in Mind and Machine. ICCS 2020. Lecture Notes in Computer Science(), vol 12277. Springer, Cham. https://doi.org/10.1007/978-3-030-57855-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57855-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57854-1

  • Online ISBN: 978-3-030-57855-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics