Skip to main content

Nondestructive Diagnosis and Analysis of Computed Microtomography Images via Texture Descriptors

  • Conference paper
  • First Online:
Advances in Multidisciplinary Medical Technologies ─ Engineering, Modeling and Findings

Abstract

X-ray computed microtomography (μCT or micro-CT) allows a nondestructive analysis of samples, which helps their reuse. The X-ray μCT equipment offers the user several configuration options that change the quality of the images obtained, thus affecting the expected result. In this study, a methodology for analyzing X-ray μCT images generated by the SkyScan 1174 Compact Micro-CT equipment was developed. The basis of this analysis methodology is texture descriptors. Three sets of images were used, and then degradations and noise were applied to the original images, generating new images. Subsequently, the following texture descriptors assisted in scrutinizing the sets: maximum probability, the moment of difference, the inverse difference moment, entropy, and uniformity. Experiments show the outcomes of some tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Cnudde, M.N. Boone, High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Sci.Rev. 123, 1–17 (2013)

    Article  Google Scholar 

  2. J. Hsieh, Computed Tomography: Principles, Design, Artifacts and Recent Advances, 2nd edn. (SPIE, Bellingham, 2009)

    Google Scholar 

  3. P.D. Jacques, A.R. Nummer, R.J. Heck, R. Machado, The use of microtomography in structural geology: a new methodology to analyse fault faces. J. Struct. Geol. 66, 347–355 (2014)

    Article  Google Scholar 

  4. W.-A. Kahl, B. Ramminger, Non-destructive fabric analysis of prehistoric pottery using high-resolution X-ray microtomography: a pilot study on the late Mesolithic to Neolithic site Hamburg-Boberg. J. Archaeol. Sci. 39, 2206–2219 (2012)

    Article  Google Scholar 

  5. P.F. Wilson, M.P. Smith, J. Hay, J.M. Warnett, A. Attridge, M.A. Williams, X-ray computed tomography (XCT) and chemical analysis (EDX and XRF) used in conjunction for cultural conservation: the case of the earliest scientifically described dinosaur Megalosaurus bucklandii. Heritage Sci. 6 (2018)

    Google Scholar 

  6. F. Bernardini, E. Leghissa, D. Prokop, A. Velušček, A.D. Min, D. Dreossi, S. Donato, C. Tuniz, F. Princivalle, M.M. Kokelj, X-ray computed microtomography of Late Copper Age decorated bowls with cross-shaped foots from central Slovenia and the Trieste Karst (North-Eastern Italy): technology and paste characterisation. Archaeol. Anthropol. Sci. 11, 4711–4728 (2019)

    Article  Google Scholar 

  7. R. Mizutania, Y. Suzukib, X-ray microtomography in biology. Micron 43, 104–115 (2012)

    Article  Google Scholar 

  8. C. Murphy, D.Q. Fuller, C.J. Stevens, T. Gregory, F. Silva, R.D. Martello, J. Song, A.J. Bodey, C. Rau, Looking beyond the surface: Use of high resolution X-ray computed tomography on archaeobotanical remains. Interdiscip. Archaeol. – Nat. Sci. Archaeol. 10, 7–18 (2019)

    Google Scholar 

  9. F.S. Ahmann, I. Evseev, M.G.F. Paz, R. Lingnau, I. Ievsieieva, J.T. de Assis, H.D.L. Alves, Xray computed microtomography as a tool for the comparative morphological characterization of Proceratophrys bigibbosa species from southern Brazil, in Proc. 2011 International Nuclear Atlantic Conference – INAC, Belo Horizonte, MG, Brazil, 2011 (2011)

    Google Scholar 

  10. C. Zanolli, C. Dean, L. Rook, L. Bondioli, A. Mazurier, R. Macchiarelli, Enamel thickness and enamel growth in Oreopithecus: combining microtomographic and histological evidence. Comptes rendus – Palevol 15, 209–226 (2016)

    Article  Google Scholar 

  11. B. Oglakci, M. Kazak, N. Donmez, E.E. Dalkilic, S.S. Koymen, The use of a liner under different bulk-fill resin composites: 3D GAP formation analysis by x-ray microcomputed tomography. J. Appl. Oral Sci. 28, e20190042 (2019)

    Article  Google Scholar 

  12. SKYSCAN, 2011 – Nrecon User Manual. http://bruker-microct.com/

  13. SKYSCAN, 2013 – Morphometric parameters measured by SkyscanTM CT – Analyser software. http://bruker-microct.com/

  14. E.F. Teixeira, S.R. Fernandes, Development of a computational tool for classification of image patterns (in Portuguese). Seminários de Trabalhos de Conclusão de Curso do Bacharelado em Sistemas de Informação, Vol. 1, 1, Juiz de Fora, MG, Brazil. ISSN: 2525-3131 (2016)

    Google Scholar 

  15. S.R. Fernandes, Image Characterization of X-Ray Microtomography Using Texture Descriptors (in Portuguese). D.Sc. Dissertation, UERJ-IPRJ, Nova Friburgo, RJ, Brazil, 2012

    Google Scholar 

  16. R.M. Haralick, K. Shanmugan, I. Dinstein, Textural features of images classification. IEEE Trans. Syst. Man Cybernetics SMC-3, 610–621 (1973)

    Article  Google Scholar 

  17. A.E. Herrmann, V.V. Estrela, Content-based image retrieval (CBIR) in remote clinical diagnosis and healthcare, in Encyclopedia of E-Health and Telemedicine, ed. by M. M. Cruz-Cunha, I. M. Miranda, R. Martinho, R. Rijo, (IGI Global, Hershey, 2016). https://doi.org/10.4018/978-1-4666-9978-6.ch039

    Chapter  Google Scholar 

  18. W.R. Schwartz, F.R. de Siqueira, H. Pedrini, Evaluation of feature descriptors for texture classification. J. Electron. Imaging 21(2), 023016.1–023016.17 (2012)

    Article  Google Scholar 

  19. F.R. Siqueira, W.R. Schwartz, H. Pedrini, Multi-scale gray level co-occurrence matrices for texture description. Neurocomputing 120, 336–345 (2013)

    Article  Google Scholar 

  20. A. Bizzego, N. Bussola, D. Salvalai, M. Chierici, V. Maggio, G. Jurman, C. Furlanello (2019) bioRxiv 568170; https://doi.org/10.1101/568170

  21. S.M. Gatesy, D.B. Baier, F.A. Jenkins, K.P. Dial, Scientific rotoscoping: A morphology-based method of 3-D motion analysis and visualization. J. Exp. Zool.Part A. 313(5), 244–261 (2010)

    Google Scholar 

  22. V.V. Estrela, A.M. Coelho, State-of-the-art motion estimation in the context of 3D TV, in Multimedia Networking and Coding, ed. by R. A. Farrugia, C. J. Debono, (IGI Global, Hershey, 2013), pp. 148–173. https://doi.org/10.4018/978-1-4666-2660-7.ch006

    Chapter  Google Scholar 

  23. H.R. Marins, V.V. Estrela, On the use of motion vectors for 2D and 3D error concealment in H.264 AVC video, in Feature Detectors and Motion Detection in Video Processing, ed. by N. Dey, A. S. Ashour, P. K. Patra, 1st edn., (IGI Global, Hershey, 2017). https://doi.org/10.4018/978-1-5225-1025-3.ch008

    Chapter  Google Scholar 

  24. S. Guan, H.A. Gray, F. Keynejad, M.G. Pandy, Mobile biplane X-ray imaging system for measuring 3D dynamic joint motion during overground gait. IEEE Trans. Med. Imaging 35(1), 326–336 (2016)

    Article  Google Scholar 

  25. G.B. Sharma, G. Kuntze, D. Kukulski, J.L. Ronsky, Validating dual fluoroscopy system capabilities for determining in-vivo knee joint soft tissue deformation: A strategy for registration error management. J. Biomech. 48(10), 2181–2185 (2015)

    Article  Google Scholar 

  26. A. Deshpande, P. Patavardhan, V.V. Estrela, N. Razmjooy, Deep learning as an alternative to super-resolution imaging in UAV systems, in Imaging and Sensing for Unmanned Aircraft Systems, ed. by V. V. Estrela, J. Hemanth, O. Saotome, G. Nikolakopoulos, R. Sabatini, vol. 2, (IET, London, 2020)

    Google Scholar 

  27. D. Panetta, L. Labate, L. Billeci, N.D. Lascio, G. Esposito, F. Faita, G. Mettivier, D. Palla, L. Pandola, P. Pisciotta, G. Russo, A. Sarno, P. Tomassini, P.A. Salvadori, L.A. Gizzi, P.M. Russo, Numerical simulation of novel concept 4D cardiac microtomography for small rodents based on all-optical Thomson scattering X-ray sources. Sci. Rep. 9, 1–12 (2019)

    Article  Google Scholar 

  28. M. Voltolini, J.B. Ajo-Franklin, The effect of CO2-induced dissolution on flow properties in Indiana Limestone: an in situ synchrotron X-ray micro-tomography study. Int. J. Greenhouse Gas Control 82, 38–47 (2019)

    Article  Google Scholar 

  29. A. Veith, A.B. Baker, A non-destructive method for quantifying tissue vascularity using quantitative deep learning image processing. bioRxiv (2020)

    Google Scholar 

  30. T.V. Spina, G.J. Vasconcelos, H.M. Gonçalves, G.C. Libel, H. Pedrini, T. Carvalho, N.L. Archilha, Towards real time segmentation of large-scale 4D micro/nanotomography images in the Sirius synchrotron light source. Microsc. Microanal. 24, 92–93 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro R. Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernandes, S.R. et al. (2021). Nondestructive Diagnosis and Analysis of Computed Microtomography Images via Texture Descriptors. In: Khelassi, A., Estrela, V.V. (eds) Advances in Multidisciplinary Medical Technologies ─ Engineering, Modeling and Findings. Springer, Cham. https://doi.org/10.1007/978-3-030-57552-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57552-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57551-9

  • Online ISBN: 978-3-030-57552-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics