Skip to main content

Abstract

Demand Side Management (DSM) is usually considered as a process of energy consumption shifting from peak hours to off-peak times. DSM does not always reduce total energy consumption, but it helps to meet energy demand and supply. For example, it balances variable generation from renewables (such as solar and wind) when energy demand differs from renewable generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Bernstein, L. Reyes-Chamorro, J.-Y. Le Boudec, M. Paolone, A composable method for real-time control of active distribution networks with explicit power setpoints. part I: Framework. Electr. Power Syst. Res. 125, 254–264 (2015)

    Google Scholar 

  2. A. Bernstein, E. Dall’Anese, A. Simonetto, Online primal-dual methods with measurement feedback for time-varying convex optimization. IEEE Trans. Signal Process. 67(8), 1978–1991 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. V.D. Blondel, S.P. Boyd, H. Kimura, Recent Advances in Learning and Control, vol. 371. Lecture Notes in Control and Information Sciences (Springer, London, 2008). https://doi.org/10.1007/978-1-84800-155-8

  4. C.C. Carøe, R. Schultz, A Two-Stage Stochastic Program for Unit Commitment Under Uncertainty in a Hydro-Thermal Power System (ZIB, Berlin, 1998)

    Google Scholar 

  5. M.P. Cristobal, L.F. Escudero, J.F. Monge, On stochastic dynamic programming for solving large-scale planning problems under uncertainty. Comput. Oper. Res. 36(8), 2418–2428 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Dall’Anese, A. Simonetto, Optimal power flow pursuit. IEEE Trans. Smart Grid 9(2), 942–952 (2018)

    Article  Google Scholar 

  7. P. Damcı-Kurt, S. Küçükyavuz, D. Rajan, A. Atamtürk, A polyhedral study of production ramping. Math. Program. 158(1), 175–205 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. T.H. de Mello, B.K. Pagnoncelli, Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective. Eur. J. Oper. Res. 249(1), 188–199 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. A.J. del Real, A. Arce, C. Bordons, An integrated framework for distributed model predictive control of large-scale power networks. IEEE Trans. Ind. Inf. 10(1), 197–209 (2014)

    Article  Google Scholar 

  10. J. Dupačová, N. Gröwe-Kuska, W. Römisch, Scenario reduction in stochastic programming. Math. Program. 95(3), 493–511 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. L.F. Escudero, M.A. Garin, M. Merino, G. Perez, A general algorithm for solving two-stage stochastic mixed 0-1 first-stage problems. Comput. Oper. Res. 36, 2590–2600 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. L.F. Escudero, M.A. Garin, M.A. Merino, G. Perez, A general algorithm for solving two-stage stochastic mixed 0-1 first-stage problems. Comput. Oper. Res. 36(9), 2590–2600 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. L.F. Escudero, M.A. Garin, M.A. Merino, G. Perez, An algorithmic framework for solving large-scale multistage stochastic mixed 0-1 problems with nonsymmetric scenario trees. Comput. Oper. Res. 39(5), 1133–1144 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. L.F. Escudero, M.A. Garin, G. Perez, A. Unzueta, Scenario cluster decomposition of the lagrangian dual in two-stage stochastic mixed 0-1 optimization. Comput. Oper. Res. 40(1), 362–377 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. L.F. Escudero, M.A. Garin, M.A. Merino, G. Perez, A decomposition framework for solving dynamic minlp problems under uncertainty. Workshop on mixed integer nonlinear programming. In USA) Carnegie Mellon University, Pittsburgh (PA, editor, Workshop on Mixed Integer Nonlinear Programming, WMINLP2014 (2014)

    Google Scholar 

  16. L.F. Escudero, A. Alonso-Ayuso, F.J. Martin-Campo, On a strategic multistage scenario tree framework with tactical multi-period two-stage trees for electricity network capacity expansion planning under uncertainty (2016)

    Google Scholar 

  17. L.F. Escudero, A. Alonso-Ayuso, F.J. Martin-Campo, On a strategic multistage scenario tree framework with tactical multi-period two-stage trees for energy network capacity expansion planning under uncertainty, and decomposition algorithms for problem solving (2016)

    Google Scholar 

  18. L.F. Escudero, M.A. Araceli Garin, M. Merino, G. Perez, On time stochastic dominance induced by mixed integer-linear recourse in multistage stochastic programs. Eur. J. Oper. Res. 249(1), 164–176 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. L.F. Escudero, J.F. Monge, D.R. Morales, On the time-consistent stochastic dominance risk averse measure for tactical supply chain planning under uncertainty. Comput. Oper. Res. 100, 270–286 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. L.F. Escudero, M.A. Garin, J.F. Monge, A. Unzueta, On multistage stochastic mixed 0-1 bilinear optimization based on endogenous uncertainty and time consistent stochastic dominance risk averse management (2019)

    Google Scholar 

  21. A.R. Fioravanti, J. Mareček, R.N. Shorten, M. Souza, F.R. Wirth, On classical control and smart cities, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (2017), pp. 1413–1420

    Google Scholar 

  22. A.R Fioravanti, J. Marecek, R.N. Shorten, M. Souza, F.R Wirth, On the ergodic control of ensembles. Automatica (2018). Preprint. arXiv:1807.03256

    Google Scholar 

  23. A. Frangioni, C. Gentile, Perspective cuts for a class of convex 0–1 mixed integer programs. Math. Program. 106(2), 225–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Frangioni, C. Gentile, New MIP formulations for the single-unit commitment problems with ramping constraints, in IASI Annual Research Reports (2015)

    Google Scholar 

  25. A. Frangioni, C. Gentile, F. Lacalandra, Tighter approximated milp formulations for unit commitment problems. IEEE Trans. Power Syst. 24(1), 105–113 (2009)

    Article  Google Scholar 

  26. A. Frangioni, F. Furini, C. Gentile, Approximated perspective relaxations: a project and lift approach. Comput. Optim. Appl. 63(3), 705–735 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Frank, I. Steponavice, S. Rebennack, A primer on optimal power flow: a bibliographic survey – I formulations and deterministic methods. Energy Syst. 3 (2012)

    Google Scholar 

  28. S. Frank, I. Steponavice, S. Rebennack, A primer on optimal power flow: A bibliographic survey – II non-deterministic and hybrid methods. Energy Syst. 3 (2012)

    Google Scholar 

  29. D. Gade, G. Hackebeil, S.M. Ryan, J.P. Watson, R.J.B. Wets, D.L. Woodruff, Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs. Math. Program. 157(1), 47–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. V. Goel, I. Grossmann, A class of stochastic programs with decision dependent uncertainty. Math. Program. 108, 355–294 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Grant, S. Boyd, Matlab Software for Disciplined Convex Programming, Version 2.0 Beta (2017)

    Google Scholar 

  32. GRTgaz France. Our Network. http://www.grtgaz.com/en/our-company/our-network.html. Accessed 09 Feb 2019

  33. V. Gupta, I.E. Grossmann, Solution strategies for multistage stochastic programming with endogenous uncertainties. Comput. Chem. Eng. 35, 2235–2247 (2011)

    Article  Google Scholar 

  34. A. Hauswirth, A. Zanardi, S. Bolognani, Florian Dörfler, G. Hug, Online optimization in closed loop on the power flow manifold, in Proceedings of the IEEE PowerTech conference, Manchester (2017)

    Google Scholar 

  35. J.Y. Joo, M.D. Ilić, Multi-layered optimization of demand resources using lagrange dual decomposition. IEEE Trans. Smart Grid 4(4), 2081–2088 (2013)

    Article  Google Scholar 

  36. M. Juelsgaard, Utilizing distributed resources in smart grids a coordination approach: a coordination approach. Ph.D. Thesis (2014)

    Google Scholar 

  37. B. Knueven, J. Ostrowski, J. Wang, The ramping polytope and cut generation for the unit commitment problem. Inf. J. Comput. 30(4), 625–786 (2017)

    MathSciNet  MATH  Google Scholar 

  38. M. Kraning, E. Chu, J. Lavaei, S. Boyd, Dynamic network energy management via proximal message passing. Found. Trends Optim. 1(2), 73–126 (2014)

    Article  Google Scholar 

  39. E. Kuznetsova, Microgrid agent-based modelling and optimization under uncertainty (2014)

    Google Scholar 

  40. E. Kuznetsova, C. Ruiz, Y.F. Li, E. Zio, Analysis of robust optimization for decentralized microgrid energy management under uncertainty. Int. J. Elect. Power Energy Syst. 64, 815–832 (2015)

    Article  Google Scholar 

  41. J.A. López, K. Ponnambalam, V.H. Quintana, Generation and transmission expansion under risk using stochastic programming. IEEE Trans. Power Syst. 22(3), 1369–1378 (2007)

    Article  Google Scholar 

  42. G. Morales-España, C. Gentile, A. Ramos, Tight MIP formulations of the power-based unit commitment problem. OR Spect. 37(4), 929 (2015)

    Google Scholar 

  43. J. Ostrowski, M.F. Anjos, A. Vannelli, Tight mixed integer linear programming formulations for the unit commitment problem. IEEE Trans. Power Syst. 27(1), 39–46 (2012)

    Article  Google Scholar 

  44. P. Palensky, D. Dietrich, Demand side management: demand response. Intell. Energy Syst. Smart Loads 7(3), 381–388 (2011)

    Google Scholar 

  45. K. Pan, Y. Guan, A polyhedral study of the integrated minimum-up/-down time and ramping polytope. Technical report, University of Florida (2015)

    Google Scholar 

  46. N. Rahbari-Asr, M.Y. Chow, Cooperative distributed demand management for community charging of PHEV/PEVs based on KKT conditions and consensus networks. IEEE Trans. Ind. Inf. 10(3), 1907–1916 (2014)

    Article  Google Scholar 

  47. A. Safdarian, M. Fotuhi-Firuzabad, M. Lehtonen, A distributed algorithm for managing residential demand response in smart grids. IEEE Trans. Ind. Inf. 10(4), 2385–2393 (2014)

    Article  Google Scholar 

  48. R. Schultz, Stochastic programming with integer variables. Math. Program. 97(1), 285–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Simonetto, E. Dall’Anese, Prediction-correction algorithms for time-varying constrained optimization. IEEE Trans. Signal Proces. 65(20), 5481–5494 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Sumaili, H. Keko, V. Miranda, A. Botterud, J. Wang, Clustering-based wind power scenario reduction, in Proceedings of the 17th Power Systems Computation Conference (2011)

    Google Scholar 

  51. S. Takriti, J.R. Birge, E. Long, A stochastic model for the unit commitment problem. IEEE Trans. Power Syst. 11(3), 1497–1508 (1996)

    Article  Google Scholar 

  52. Y. Tang, K. Dvijotham, S. Low, Real-time optimal power flow. IEEE Trans. Smart Grid 8(6), 2963–2973 (2017)

    Article  Google Scholar 

  53. TEREGA. Key Figures. https://www2.terega.fr/en/who-we-are/our-work/key-figures.html. Accessed 09 Feb 2019

  54. W. Van Ackooij, J. Malick, Decomposition algorithm for large-scale two-stage unitcommitment. Annal. Oper. Res. 238, 587–613 (2016)

    Article  MATH  Google Scholar 

  55. W. Van Ackooij, C. Sagastizabal, Constrained bundle methods for upper inexact oracles with application to join chance constrained energy problems. SIAM J. Optim. 24, 733–765 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. J.S. Vardakas, N. Zorba, C.V. Verikoukis, A survey on demand response programs in smart grids: pricing methods and optimization algorithms. IEEE Commun. Surv. Tutorials 17(1) (2015)

    Google Scholar 

  57. C. Wang, S.M. Shahidehpour, Effects of ramp-rate limits on unit commitment and economic dispatch. IEEE Trans. Power Syst. 8(3), 1341–1350 (1993)

    Article  Google Scholar 

  58. C. Wang, S.M. Shahidehpour, Ramp-rate limits in unit commitment and economic dispatch incorporating rotor fatigue effect. IEEE Trans. Power Syst. 9(3), 1539–1545 (1994)

    Article  Google Scholar 

  59. C. Wang, S.M. Shahidehpour, Optimal generation scheduling with ramping costs. IEEE Trans. Power Syst. 10(1), 60–67 (1995)

    Article  Google Scholar 

  60. J. Zou, S. Ahmed, X. A. Sun, Multistage stochastic unit commitment using stochastic dual dynamic integer programming. IEEE Trans. Power Syst. 34(3), 1814–1823 (2019)

    Article  Google Scholar 

  61. J. Zou, S. Ahmed, X. A. Sun, Stochastic dual dynamic integer programming. Math. Program. 175(1), 461–502 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Escudero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diekerhof, M. et al. (2021). Production and Demand Management. In: Hadjidimitriou, N.S., Frangioni, A., Koch, T., Lodi, A. (eds) Mathematical Optimization for Efficient and Robust Energy Networks. AIRO Springer Series, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-57442-0_1

Download citation

Publish with us

Policies and ethics