Skip to main content

Support Relation Analysis for Objects in Multiple View RGB-D Images

  • Conference paper
  • First Online:
Artificial Intelligence. IJCAI 2019 International Workshops (IJCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12158))

Included in the following conference series:

Abstract

Understanding physical relations between objects, especially their support relations, is crucial for robotic manipulation. In this paper, we propose a method for extracting more detailed physical knowledge from a set of RGB-D images taken from the same scene but from different views using qualitative reasoning and intuitive physical models. Rather than providing a simple contact relation graph and approximating stability over convex shapes, our method is able to provide a detailed supporting relation analysis based on a volumetric representation. Specifically, true supporting relations between objects (e.g., if an object supports another object by touching it on the side or if the object above contributes to the stability of the object below) are identified. We apply our method to real-world structures captured in warehouse scenarios and show our method works as desired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.pointclouds.org.

  2. 2.

    Date set 2 can be provided upon request.

References

  1. Allen, J.F., Koomen, J.A.: Planning using a temporal world model. In: IJCAI 1983, pp. 741–747. Morgan Kaufmann Publishers Inc., Burlington (1983)

    Google Scholar 

  2. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures. vol. 1611, pp. 586–607. International Society for Optics and Photonics (1992)

    Google Scholar 

  3. Chen, K., Lai, Y., Hu, S.: 3d indoor scene modeling from RGB-D data: a survey. CVM 1(4), 267–278 (2016)

    Google Scholar 

  4. Cholewiak, S.A., Fleming, R.W., Singh, M.: Visual perception of the physical stability of asymmetric three-dimensional objects. JOV 13(4), 12–12 (2013)

    Google Scholar 

  5. Ciocarlie, M., Hsiao, K., Jones, E.G., Chitta, S., Rusu, R.B., Şucan, I.A.: Towards reliable grasping and manipulation in household environments. In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) ISER 2014, pp. 241–252. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-28572-1_17

    Chapter  Google Scholar 

  6. Davis, E., Marcus, G.: The scope and limits of simulation in automated reasoning. AIJ 233, 60–72 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Fahlman, S.E.: A planning system for robot construction tasks. AIJ 5(1), 1–49 (1974)

    Google Scholar 

  8. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    MathSciNet  Google Scholar 

  9. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Manhattan-world stereo. In: CVPR 2009, pp. 1422–1429. IEEE (2009)

    Google Scholar 

  10. Ge, X., Renz, J.: Representation and reasoning about general solid rectangles. IJCAI 2013, 905–911 (2013)

    Google Scholar 

  11. Ge, X., Renz, J., Abdo, N., Burgard, W., Dornhege, C., Stephenson, M., Zhang, P.: Stable and robust: stacking objects using stability reasoning. In: Workshop on Human-Robot Engagement in the Home, Workplace and Public Spaces, IJCAI 2017, p. 27 (2017)

    Google Scholar 

  12. Ge, X., Renz, J., Zhang, P.: Visual detection of unknown objects in video games using qualitative stability analysis. TCIAIG 8(2), 166–177 (2016)

    Google Scholar 

  13. Guesgen, H.W.: Spatial reasoning based on Allen’s temporal logic. International Computer Science Institute Berkeley (1989)

    Google Scholar 

  14. Jia, Z., Gallagher, A., Saxena, A., Chen, T.: 3d-based reasoning with blocks, support, and stability. CVPR 2013, 1–8 (2013)

    Google Scholar 

  15. Kemp, C.C., Edsinger, A., Torres-Jara, E.: Challenges for robot manipulation in human environments [grand challenges of robotics]. RAM 14(1), 20–29 (2007)

    Google Scholar 

  16. Ku, J., Harakeh, A., Waslander, S.L.: In defense of classical image processing: fast depth completion on the CPU. In: 2018 15th Conference on Computer and Robot Vision (CRV), pp. 16–22. IEEE (2018)

    Google Scholar 

  17. Kuipers, B.: Qualitative reasoning: modeling and simulation with incomplete knowledge. Automatica 25(4), 571–585 (1989)

    Google Scholar 

  18. Laboratory, R.P.I.I.P., Meagher, D.: Octree Encoding: a New Technique for the Representation, Manipulation and Display of Arbitrary 3-D Objects by Computer (1980)

    Google Scholar 

  19. Lee, J.H., Renz, J., Wolter, D., et al.: Starvars-effective reasoning about relative directions. IJCAI 2013, 976–982 (2013)

    Google Scholar 

  20. Li, W., Leonardis, A., Fritz, M.: Visual stability prediction for robotic manipulation. In: ICRA 2017. IEEE (2017)

    Google Scholar 

  21. Ligozat, G.É.: Reasoning about cardinal directions. JVLC 9(1), 23–44 (1998)

    Google Scholar 

  22. Liu, W., Li, S., Renz, J., et al.: Combining RCC-8 with qualitative direction calculi: algorithms and complexity. IJCAI 2009, 854–859 (2009)

    Google Scholar 

  23. Liu, Y., Wang, X., Jin, X., Wu, L.: On internal cardinal direction relations. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 283–299. Springer, Heidelberg (2005). https://doi.org/10.1007/11556114_18

    Chapter  Google Scholar 

  24. Livesley, R.: Limit analysis of structures formed from rigid blocks. IJNME 12(12), 1853–1871 (1978)

    MATH  Google Scholar 

  25. Mojtahedzadeh, R., Bouguerra, A., Lilienthal, A.J.: Automatic relational scene representation for safe robotic manipulation tasks. In: IROS 2013, pp. 1335–1340. IEEE (2013)

    Google Scholar 

  26. Navarrete, I., Sciavicco, G.: Spatial reasoning with rectangular cardinal direction relations. In: ECAI 2006, vol. 6, pp. 1–10 (2006)

    Google Scholar 

  27. Panda, S., Abdul Hafez, A.H., Jawahar, C.: Single and multiple view support order prediction in clutter for manipulation (2016)

    Google Scholar 

  28. Papon, J., Abramov, A., Schoeler, M., Worgotter, F.: Voxel cloud connectivity segmentation-supervoxels for point clouds. CVPR 2013, 2027–2034 (2013)

    Google Scholar 

  29. Pomerleau, F., Colas, F., Siegwart, R., et al.: A review of point cloud registration algorithms for mobile robotics. Found. Trends® Robot. 4(1), 1–104 (2015)

    Google Scholar 

  30. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. KR 1992(92), 165–176 (1992)

    Google Scholar 

  31. Shao, T., Monszpart, A., Zheng, Y., Koo, B., Xu, W., Zhou, K., Mitra, N.: Imagining the unseen: stability-based cuboid arrangements for scene understanding. TOG 33(6), 10 (2014)

    Google Scholar 

  32. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  33. Skiadopoulos, S., Koubarakis, M.: Composing cardinal direction relations. AIJ 152(2), 143–171 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene completion from a single depth image. arXiv preprint arXiv:1611.08974 (2016)

  35. Stein, S.C., Wörgötter, F., Schoeler, M., Papon, J., Kulvicius, T.: Convexity based object partitioning for robot applications. In: ICRA 2014, pp. 3213–3220. IEEE (2014)

    Google Scholar 

  36. Stoyanov, T., et al.: No more heavy lifting: robotic solutions to the container unloading problem. IEEE Robot. Autom. Mag. 23(4), 94–106 (2016)

    Google Scholar 

  37. Whiting, E., Ochsendorf, J., Durand, F.: Procedural modeling of structurally-sound masonry buildings. In: TOG, vol. 28, p. 112. ACM (2009)

    Google Scholar 

  38. Zhang, P., Renz, J.: Qualitative spatial representation and reasoning in angry birds: the extended rectangle algebra. In: KR 2014 (2014)

    Google Scholar 

  39. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE MultiMedia 19(2), 4–10 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, P., Ge, X., Renz, J. (2020). Support Relation Analysis for Objects in Multiple View RGB-D Images. In: El Fallah Seghrouchni, A., Sarne, D. (eds) Artificial Intelligence. IJCAI 2019 International Workshops. IJCAI 2019. Lecture Notes in Computer Science(), vol 12158. Springer, Cham. https://doi.org/10.1007/978-3-030-56150-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56150-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56149-9

  • Online ISBN: 978-3-030-56150-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics