Skip to main content

Material Jetting

  • Chapter
  • First Online:
Additive Manufacturing Technologies

Abstract

Printing technologies progressed rapidly as the adoption of personal computers spread through offices and homes. Inkjet printing, in particular, is a huge market, and billions of dollars have been invested to make inkjet print heads reliable, inexpensive, and widely available. As a result of advances in inkjet printing technologies, many application areas beyond photos and text have been explored, including electronics packaging, optics, and Additive Manufacturing. Some of these applications have literally taken the technology into a new dimension. The employment of printing technologies in the creation of three-dimensional products quickly became a promising manufacturing practice, both widely studied and increasingly widely used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le, H. P. (1998). Progress and trends in ink-jet printing technology. Journal of Imaging Science and Technology, 42(1), 49–62.

    Google Scholar 

  2. The rapid prototyping patent museum: basic technology patents. (2013). US Patents.

    Google Scholar 

  3. Wohlers, T., (2004). Wohlers Report, Wohlers Associates.

    Google Scholar 

  4. Derby, B., & Reis, N. (2003). Inkjet printing of highly loaded particulate suspensions. MRS Bulletin, 28(11), 815–818.

    Article  Google Scholar 

  5. De Gans, B. J., Duineveld, P. C., & Schubert, U. S. (2004). Inkjet printing of polymers: State of the art and future developments. Advanced Materials, 16(3), 203–213.

    Article  Google Scholar 

  6. MicroFab Technote 99–02 fluid properties effects on ink-jet device performance. (1999). MicroFab Technologies, Inc.

    Google Scholar 

  7. Paton, A. D., & Kruse, J. M. (1995). Reduced nozzle viscous impedance. US Patents.

    Google Scholar 

  8. Gao, F., & Sonin, A. A. (1994). Precise deposition of molten microdrops: The physics of digital microfabrication. Proceedings of the Royal Society A, 444(1922), 533–554.

    Google Scholar 

  9. Reis, N., et al. (1998). Direct inkjet deposition of ceramic green bodies: II–jet behaviour and deposit formation. MRS Online Proceedings Library Archive. 542.

    Google Scholar 

  10. Feng, W., Fuh, J. Y., & Wong, Y. S. (2006). Development of a drop-on-demand micro dispensing system. In Materials science forum. Uetikon: Trans Tech Publ.

    Google Scholar 

  11. 3D Systems, 3D Printers. (2020). http://www.3dsystems.com/3d-printers

  12. Leyden, R. N., & Hull, C. W. (1999). Method for selective deposition modeling. US Patents.

    Google Scholar 

  13. de Gans, B. J., et al. (2004). Ink-jet printing polymers and polymer libraries using micropipettes. Macromolecular Rapid Communications, 25(1), 292–296.

    Article  Google Scholar 

  14. Xu, P., et al. (2008). Phase change support material composition. US Patents.

    Google Scholar 

  15. Schmidt, K. A. (2005). Selective deposition modeling with curable phase change materials. US Patents.

    Google Scholar 

  16. Tay, B., & Edirisinghe, M. (2001). Investigation of some phenomena occurring during continuous ink-jet printing of ceramics. Journal of Materials Research, 16(2), 373–384.

    Article  Google Scholar 

  17. Ainsley, C., Reis, N., & Derby, B. (2002). Freeform fabrication by controlled droplet deposition of powder filled melts. Journal of Materials Science, 37(15), 3155–3161.

    Article  Google Scholar 

  18. Zhao, X., et al. (2002). Direct ink-jet printing of vertical walls. Journal of the American Ceramic Society, 85(8), 2113–2115.

    Article  Google Scholar 

  19. Wang, T., & Derby, B. (2005). Ink-jet printing and sintering of PZT. Journal of the American Ceramic Society, 88(8), 2053–2058.

    Article  Google Scholar 

  20. Liu, Q., & Orme, M. (2001). High precision solder droplet printing technology and the state-of-the-art. Journal of Materials Processing Technology, 115(3), 271–283.

    Article  Google Scholar 

  21. Priest, J. W., Smith, C., & DuBois, P. (1997). Liquid metal jetting for printing metal parts. In Solid Freeform Fabrication Proceedings. Austin: University of Texas at Austin.

    Google Scholar 

  22. Orme, M. (1993). A novel technique of rapid solidification net-form materials synthesis. Journal of Materials Engineering and Performance, 2(3), 399–405.

    Article  Google Scholar 

  23. Orme, M. E., Huang, C., & Courier, J. (1996). Precision droplet-based manufacturing and material synthesis: fluid dynamics and thermal control issues. Atomization and Sprays, 6(3), 305–329.

    Google Scholar 

  24. Yamaguchi, K. (2003). Generation of 3-dimensional microstructure by metal jet. Microsystem Technologies, 9(3), 215–219.

    Article  Google Scholar 

  25. Yamaguchi, K., et al. (2000). Generation of three-dimensional micro structure using metal jet. Precision Engineering, 24(1), 2–8.

    Article  Google Scholar 

  26. Cao, W., & Miyamoto, Y. (2006). Freeform fabrication of aluminum parts by direct deposition of molten aluminum. Journal of Materials Processing Technology, 173(2), 209–212.

    Article  Google Scholar 

  27. Liu, Q., & Orme, M. (2001). On precision droplet-based net-form manufacturing technology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 215(10), 1333–1355.

    Article  Google Scholar 

  28. Shimoda, T., et al. (2003). Inkjet printing of light-emitting polymer displays. MRS Bulletin, 28(11), 821–827.

    Article  Google Scholar 

  29. Zhao, X., et al. (2001). Ceramic freeforming using an advanced multinozzle ink-jet printer. Journal of Materials Synthesis and Processing, 9(6), 319–327.

    Article  Google Scholar 

  30. XJet. (2020). https://startup-map.berlin/companies/xjet.

  31. Furbank, R. J., & Morris, J. F. (2004). An experimental study of particle effects on drop formation. Physics of Fluids, 16(5), 1777–1790.

    Article  MATH  Google Scholar 

  32. Bechtel, S., et al. (1981). Impact of a liquid drop against a flat surface. IBM Journal of Research, 25(6), 963–971.

    Article  Google Scholar 

  33. Pasandideh-Fard, M., et al. (1996). Capillary effects during droplet impact on a solid surface. Physics of Fluids, 8(3), 650–659.

    Article  Google Scholar 

  34. Thoroddsen, S., & Sakakibara, J. (1998). Evolution of the fingering pattern of an impacting drop. Physics of Fluids, 10(6), 1359–1374.

    Article  Google Scholar 

  35. Bhola, R., & Chandra, S. (1999). Parameters controlling solidification of molten wax droplets falling on a solid surface. Journal of Materials Science, 34(19), 4883–4894.

    Article  Google Scholar 

  36. Attinger, D., Zhao, Z., & Poulikakos, D. (2000). An experimental study of molten microdroplet surface deposition and solidification: Transient behavior and wetting angle dynamics. Journal of Heat Transfer, 122(3), 544–556.

    Article  Google Scholar 

  37. Zhou, W., et al. (2013). What controls dynamics of droplet shape evolution upon impingement on a solid surface? AICHE Journal, 59(8), 3071–3082.

    Article  Google Scholar 

  38. Bussmann, M., Chandra, S., & Mostaghimi, J. (2000). Modeling the splash of a droplet impacting a solid surface. Physics of Fluids, 12(12), 3121–3132.

    Article  MATH  Google Scholar 

  39. Orme, M., & Huang, C. (1997). Phase change manipulation for droplet-based solid freeform fabrication. Journal of Heat Transfer, 119(4), 818–823.

    Article  Google Scholar 

  40. Schiaffino, S., & Sonin, A. A. (1997). Molten droplet deposition and solidification at low weber numbers. Physics of Fluids, 9(11), 3172–3187.

    Article  Google Scholar 

  41. Sanders, R., Forsyth, L., & Philbrook, K. (1996). 3-D Model maker. US Patents.

    Google Scholar 

  42. Thayer, J. S., et al. (2001). Selective deposition modeling system and method. US Patents.

    Google Scholar 

  43. Gothait, H. (2005). System and method for three dimensional model printing. US Patents.

    Google Scholar 

  44. Gothait, H. (2001). Apparatus and method for three dimensional model printing. US Patents.

    Google Scholar 

  45. Bedal, B. J., & Bui, L. V. (2002). Method and apparatus for controlling the drop volume in a selective deposition modeling environment. US Patents.

    Google Scholar 

  46. MicroFab Technote 99–01 background on ink-jet technology. (1999). MicroFab Technologies, Inc.

    Google Scholar 

  47. Tay, B., Evans, J., & Edirisinghe, M. (2003). Solid freeform fabrication of ceramics. International Materials Reviews, 48(6), 341–370.

    Article  Google Scholar 

  48. Teng, W. D., & Edirisinghe, M. (1998). Development of continuous direct ink jet printing of ceramics. BRIT CERAM T, 97(4), 169–173.

    Google Scholar 

  49. Blazdell, P., et al. (1995). The computer aided manufacture of ceramics using multilayer jet printing. Journal of Materials Science Letters, 14(22), 1562–1565.

    Article  Google Scholar 

  50. Blazdell, P. (2003). Solid free-forming of ceramics using a continuous jet printer. Journal of Materials Processing Technology, 137(1–3), 49–54.

    Article  Google Scholar 

  51. Tseng, A. A., Lee, M., & Zhao, B. (2001). Design and operation of a droplet deposition system for freeform fabrication of metal parts. Journal of Engineering Materials and Technology, 123(1), 74–84.

    Article  Google Scholar 

  52. Basaran, O. A. (2002). Small-scale free surface flows with breakup: Drop formation and emerging applications. AICHE Journal, 48(9), 1842–1848.

    Article  Google Scholar 

  53. Sirringhaus, H., et al. (2000). High-resolution inkjet printing of all-polymer transistor circuits. Science, 290(5499), 2123–2126.

    Article  Google Scholar 

  54. Lee, E. R. (2002). Microdrop generation. CRC press.

    Google Scholar 

  55. Percin, G., & Khuri-Yakub, B. T. (2002). Piezoelectrically actuated flextensional micromachined ultrasound droplet ejectors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(6), 756–766.

    Article  Google Scholar 

  56. Elrod, S., et al. (1989). Nozzleless droplet formation with focused acoustic beams. Journal of Applied Physics, 65(9), 3441–3447.

    Article  Google Scholar 

  57. Meacham, J., et al. (2004). Micromachined ultrasonic droplet generator based on a liquid horn structure. Review of Scientific Instruments, 75(5), 1347–1352.

    Article  Google Scholar 

  58. Meacham, J., et al. (2005). Droplet formation and ejection from a micromachined ultrasonic droplet generator: Visualization and scaling. Physics of Fluids, 17(10), 100605.

    Article  MATH  Google Scholar 

  59. Meacham, J. M., et al. (2010). Micromachined ultrasonic print-head for deposition of high-viscosity materials. Journal of Manufacturing Science and Engineering, 132(3), 030905.

    Article  Google Scholar 

  60. Fukumoto, H., et al. (2000). Printing with ink mist ejected by ultrasonic waves. Journal of Imaging Science and Technology, 44(5), 398–405.

    Google Scholar 

  61. Rasa, M. V., et al. (2013). Device for ejecting droplets of a fluid having a high temperature. US Patent. p. 8,444,028.

    Google Scholar 

  62. Simonelli, M., et al. (2019). Towards digital metal additive manufacturing via high-temperature drop-on-demand jetting. Additive Manufacturing, 30.

    Google Scholar 

  63. Vader, S., & Vader, Z.. (2017). Conductive liquid three dimensional printer. US Patent. p. 9,616,494.

    Google Scholar 

  64. Foresti, D., et al. (2018). Acoustophoretic printing. Science Advances, 4, 1659.

    Article  Google Scholar 

  65. Yin, S., et al. (2018). Cold spray additive manufacturing and repair: Fundamentals and applications. Additive Manufacturing, 21, 628–650.

    Article  Google Scholar 

  66. Moridi, A., et al. (2014). Cold spray coating: Review of material systems and future perspectives. Surface Engineering, 30(6), 369–395.

    Article  Google Scholar 

  67. ASB Industries & Impact Innovations. (2020). https://www.asbindustries.com/cold-spray-coatings

  68. Sweet, R. G. (1964). High-frequency oscillography with electrostatically deflected ink jets. Stanford University, Stanford Electronics Labs.

    Google Scholar 

  69. Munson, B., Young, D., & Okiishi, T. (1998). Fundamentals of fluid mechanics.

    Google Scholar 

  70. Solidscape. (2020). T66 Benchtop: Product Description. http://www.solid-scape.com

  71. Stratasys (2020). Polyjet technology. https://www.stratasys.com/polyjet-technology

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gibson, I., Rosen, D., Stucker, B., Khorasani, M. (2021). Material Jetting. In: Additive Manufacturing Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-56127-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56127-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56126-0

  • Online ISBN: 978-3-030-56127-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics