Skip to main content

Falsification of Cyber-Physical Systems with Constrained Signal Spaces

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12229))

Included in the following conference series:

Abstract

Falsification has garnered much interest recently as a way to validate complex CPS designs with respect to a specification expressed via temporal logics. Using their quantitative semantics, the falsification problem can be formulated as a robustness minimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A clock valuation, denoted by the letter \(\textit{\textbf{x}}\) in bold, is a vector of clock values, while \(x_i\) denotes the \(i^{th}\) clock of the automaton, as in Fig. 1.

  2. 2.

    Using more general predicates, such as linear predicates, leads to a more complicated problem of defining the transformation from the unit box, which we plan to consider in future work. This is indeed related to the problem of uniform sampling within a convex polytope.

  3. 3.

    The exploitation-driven and exploration-driven characterization refers only to the behaviors of the solvers seen on a global level, since the above-mentioned metaheuristics contain both exploitation-driven and exploration-driven aspects.

  4. 4.

    The seed here refers to the index for a sequence of random numbers in MATLAB.

  5. 5.

    See http://cps-vo.org/node/12116.

References

  1. Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., Jin, X.: Classification and coverage-based falsification for embedded control systems. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 483–503. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_24

    Chapter  Google Scholar 

  2. Luersen, M.A., Le Richec, R.: Globalized Nelder-mead method for engineering optimization. Comput. Struct. 82(23), 2251–2260 (2004)

    Article  Google Scholar 

  3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  Google Scholar 

  4. Annapureddy, Y., Liu, C., Fainekos, G.E., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: TACAS, pp. 254–257 (2011)

    Google Scholar 

  5. Asarin, E., Basset, N., Degorre, A.: Entropy of regular timed languages. Inf. Comput. 241, 142–176 (2015)

    Article  MathSciNet  Google Scholar 

  6. Barbot, B., Basset, N., Beunardeau, M., Kwiatkowska, M.: Uniform sampling for timed automata with application to language inclusion measurement. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 175–190. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4_13

    Chapter  Google Scholar 

  7. Barbot, B., Basset, N., Dang, T.: Generation of signals under temporal constraints for CPS testing. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2019. LNCS, vol. 11460, pp. 54–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20652-9_4

    Chapter  Google Scholar 

  8. Barbot, B., Bérard, B., Duplouy, Y., Haddad, S.: Integrating simulink models into the model checker cosmos. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 363–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91268-4_19

    Chapter  Google Scholar 

  9. Benoît Barbot. WordGen (2019). https://git.lacl.fr/barbot/wordgen

  10. Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Ničković, D., Sankaranarayanan, S.: Specification-based monitoring of cyber-physical systems: a survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_5

    Chapter  Google Scholar 

  11. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, GECCO 2002, San Francisco, CA, USA, pp. 11–18. Morgan Kaufmann Publishers Inc. (2002)

    Google Scholar 

  12. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

    Article  Google Scholar 

  13. Brigati, S., Francesconi, F., Malcovati, P., Tonietto, D., Baschirotto, A., Maloberti, F.: Modeling sigma-delta modulator non-idealities in simulink. In: ISCAS 1999. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI, May 1999, vol. 2, pp. 384–387 (1999)

    Google Scholar 

  14. Clarke, E.M., Donzé, A., Legay, A.: On simulation-based probabilistic model checking of mixed-analog circuits. Formal Method Syst. Des. 36(2), 97–113 (2010)

    Article  Google Scholar 

  15. Dang, T., Donzé, A., Maler, O.: Verification of analog and mixed-signal circuits using hybrid system techniques. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 21–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30494-4_3

    Chapter  Google Scholar 

  16. Dang, T., Nahhal, T.: Coverage-guided test generation for continuous and hybrid systems. Formal Method Syst. Des. 34(2), 183–213 (2009)

    Article  Google Scholar 

  17. Deshmukh, J., Jin, X., Kapinski, J., Maler, O.: Stochastic local search for falsification of hybrid systems. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 500–517. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7_35

    Chapter  MATH  Google Scholar 

  18. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: CAV, pp. 167–170 (2010)

    Google Scholar 

  19. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_17

    Chapter  Google Scholar 

  20. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9

    Chapter  MATH  Google Scholar 

  21. Dreo, J., Siarry, P., Petrowski, A., Taillard, E.: Metaheuristics for Hard Optimization: Methods and Case Studies. Springer, Berlin (2006). https://doi.org/10.1007/3-540-30966-7

    Book  MATH  Google Scholar 

  22. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Efficient guiding strategies for testing of temporal properties of hybrid systems. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_10

    Chapter  Google Scholar 

  23. Esposito, J.M., Kim, J., Kumar, V.: Adaptive RRTs for validating hybrid robotic control systems. In: WAFR (2004)

    Google Scholar 

  24. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS, vol. 4262, pp. 178–192. Springer, Heidelberg (2006). https://doi.org/10.1007/11940197_12

    Chapter  Google Scholar 

  25. Ferrère, T., Nickovic, D., Donzé, A., Ito, H., Kapinski, J.: Interface-aware signal temporal logic. In: HSCC, pp. 57–66. ACM (2019)

    Google Scholar 

  26. Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  27. Gabbay, D.M., Thagard, P., Woods, J., Butterfield, J., Earman, J.: Philosophy of Physics: Handbook of the Philosophy of Science. Elsevier Science, Amsterdam (2006)

    Google Scholar 

  28. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A., Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol. 192, pp. 75–102. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-32494-1_4

    Chapter  Google Scholar 

  29. Heinrich, S.: Some open problems concerning the star-discrepancy. J. Complex. 19(3), 416–419 (2003). Oberwolfach Special Issue

    Article  MathSciNet  Google Scholar 

  30. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic requirements for automotive systems. In: 1st and 2nd International Workshop on Applied veRification for Continuous and Hybrid Systems, ARCH@CPSWeek 2014, Berlin, Germany, 14 April 2014/ARCH@CPSWeek 2015, Seattle, WA, USA, 13 April 2015, pp. 25–30 (2014)

    Google Scholar 

  31. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  32. Koymans, R.: Specifying real-time properties with metric temporal logic. Real Time Syst. 2(4), 255–299 (1990)

    Article  Google Scholar 

  33. Kuřátko, J., Ratschan, S.: Combined global and local search for the falsification of hybrid systems. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 146–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-3_11

    Chapter  MATH  Google Scholar 

  34. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Proceedings of CAV 2011 (2011)

    Google Scholar 

  35. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: FORMATS/FTRTFT, pp. 152–166 (2004)

    Google Scholar 

  36. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  37. Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivanciec, F., Gupta, A., Pappas, G.J.: Monte-Carlo techniques for falsification of temporal properties of non-linear hybrid systems. In: HSCC 2010 - Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, pp. 211–220 (2010)

    Google Scholar 

  38. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Global Optim. 56(3), 1247–1293 (2013)

    Article  MathSciNet  Google Scholar 

  39. Silvetti, S., Policriti, A., Bortolussi, L.: An active learning approach to the falsification of black box cyber-physical systems. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_1

    Chapter  Google Scholar 

  40. Sim, G., Ahn, S., Park, I., Youn, J., Yoo, S., Min, k.: Automatic longitudinal regenerative control of EVS based on a driver characteristics-oriented deceleration model. World Electr. Veh. J. 10, 58 (2019)

    Google Scholar 

  41. Skruch, P.: A coverage metric to evaluate tests for continuous-time dynamic systems. Central Eur. J. Eng. 1(2), 174–180 (2011)

    Google Scholar 

  42. Stein, W.A., et al.: Sage Mathematics Software (Version 6.9). The Sage Development Team (2015). http://www.sagemath.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thao Dang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbot, B., Basset, N., Dang, T., Donzé, A., Kapinski, J., Yamaguchi, T. (2020). Falsification of Cyber-Physical Systems with Constrained Signal Spaces. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds) NASA Formal Methods. NFM 2020. Lecture Notes in Computer Science(), vol 12229. Springer, Cham. https://doi.org/10.1007/978-3-030-55754-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55754-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55753-9

  • Online ISBN: 978-3-030-55754-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics