Skip to main content

Interleukin-6 Function and Targeting in Prostate Cancer

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1290))

Abstract

Interleukin-6 (IL-6) is a proinflammatory cytokine, which is involved in pathogenesis of several cancers. Its expression and function in prostate cancer have been extensively studied in cellular models and clinical specimens. High levels of IL-6 were detected in conditioned media from cells which do not respond to androgens. Increased phosphorylation of signal transducer and activator of transcription (STAT)3 factor which is induced in response to IL-6 is one of the typical features of prostate cancer. However, reports in the literature show regulation of neuroendocrine phenotype by IL-6. Effects of IL-6 on stimulation of proliferation, migration, and invasion lead to the establishment of experimental and clinical approaches to target IL-6. In prostate cancer, anti-IL-6 antibodies were demonstrated to inhibit growth in vitro and in vivo. Clinically, application of anti-IL-6 therapies did not improve survival of patients with metastatic prostate cancer. However, clinical trial design in the future may include different treatment schedule and combinations with experimental and clinical therapies. Endogenous inhibitors of IL-6 such as suppressors of cytokine signaling and protein inhibitors of activated STAT have variable effects on prostate cells, depending on presence or absence of the androgen receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu Z, Wang K, Yang Z et al (2020) A novel androgen receptor antagonist JJ-450 inhibits enzalutamide-resistant mutant ARF876L nuclear import and function. Prostate 80:319–328

    Article  CAS  PubMed  Google Scholar 

  2. Jimenez-Vacas JM, Herrero-Aguayo V, Montero-Hidalgo AJ. et al. Dysregulation of the splicing machinery is directly associated to aggressiveness of prostate cancer. EBioMedicine 51:102547

    Google Scholar 

  3. Twillie DA, Eisenberger MA, Carducci MA, Hseih WS, Kim WY, Simons JW (1995) Interleukin-6: a candidate mediator of human prostate cancer morbidity. Urology 45:542–549

    Article  CAS  Google Scholar 

  4. Keller ET, Chang C, Ershler WB (1996) Inhibition of Nfkappa B activity through maintenance of IkappaBalpha levels contributes to dihydrotestosterone-mediated repression of the interleukin-6 promoter. J Biol Chem 271:26265–26267

    Article  Google Scholar 

  5. Park JI, Lee MG, Cho K et al (2003) Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Oncogene 22:4314–4332

    Article  CAS  PubMed  Google Scholar 

  6. Zerbini LF, Wang Y, Cho JY, Libermann TA (2003) Constitutive activation of nuclear factor kappaB p50/p65 and Frau-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer. Cancer Res 63:2206–2215

    CAS  PubMed  Google Scholar 

  7. Noon L, Peng L, Feldman D, Peehl DM (2006) Inhibition of p38 by vitamin D reduces interleukin-6 production in normal prostate cells via mitogen-activated protein kinase phosphatase 5: implications for prostate cancer prevention. Cancer Res 66:4516–4524

    Article  Google Scholar 

  8. Hobisch A, Rogatsch H, Hittmair A et al (2000) Immunohistochemical localization of interleukin-6 and its receptor in benign, premalignant and malignant prostate tissue. J Pathol 191:239–244

    Article  CAS  PubMed  Google Scholar 

  9. Yu SH, Zheng Q, Esopi D et al (2015) A paracrine role for IL6 in prostate cancer patients: lack of production by primary or metastatic tumor cells. Cancer Immunol Res 3:1175–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giri D, Ozen M, Ittmann M (2001) Interleukin-6 is an autocrine growth factor in human prostate cancer. Am J Pathol 159:2159–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maranto C, Udhane V, Hoang DT et al (2018) STAT5A/B blockade sensitizes prostate cancer to radiation through inhibition of RAD51 and DNA repair. Clin Cancer Res 24:1917–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu XH, Kirschenbaum A, Liu M et al (2002) Prostaglandin E(2) stimulates prostatic intraepithelial neoplasia cell growth through activation of the interleukin-6/gp130/STAT-3 signaling pathway. Biochem Biophys Res Commun 290:249–255

    Article  CAS  PubMed  Google Scholar 

  13. Degeorges A, Tatoud R, Fauvel-Lafeve M et al (1885) Stromal cells from human benign prostate hyperplasia produce a growth-inhibitory factor for LNCaP prostate cancer cells, identified as interleukin-6. Int J Cancer 68:207–214

    Article  Google Scholar 

  14. Palmer J, Ernst M, Hammacher A, Hertzog PJ (2005) Constitutive activation of gp130 leads to neuroendocrine differentiation in vitro and in vivo. Prostate 62:282–289

    Article  CAS  PubMed  Google Scholar 

  15. Mori S, Murakami-Mori K, Bonavida B (1999) Interleukin-6 induces G1 arrest through induction of p27(Kip1), a cyclin-dependent kinase inhibitor, and neuron-like morphology in LNCaP prostate tumor cells. Biochem Biophys Res Commun 257:809–814

    Article  Google Scholar 

  16. Pencik J, Schlederer M, Gruber W et al (2015) STAT3-regulated ARF expression suppresses prostate cancer metastasis. Nat Commun 6:7736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qiu Y, Robinson D, Pretlow TG, Kung HJ (1998) Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol-3 kinase and is involved in interleukin-6-induced neuroendocrine differentiation of prostate cancer cells. Proc Natl Acad Sci U S A 95:3644–3649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chung TD, Yu JJ, Kong TA, Spiotto MT, Lin JM (2000) Interleukin-6 activates phosphatidylinositol-3-kinase, which inhibits apoptosis in human prostate cancer cell lines. Prostate 42:1–7

    Article  CAS  Google Scholar 

  19. Zhu Y, Liu C, Cui Y, Nadiminty N, Lou W, Gao AC (2014) Interleukin-6 induces neuroendocrine differentiation (NED) through suppression of silencing transcription factor (REST). Prostate 74:1086–1094

    Article  CAS  PubMed  Google Scholar 

  20. Ni Z, Lou W, Leman ES, Gao AC (2000) Inhibition of constitutively activated Stat3 signaling pathway suppresses growth of prostate cancer. Cancer Res 60:1225–1228

    CAS  PubMed  Google Scholar 

  21. Lee SO, Lou W, Hou M, de Miguel F, Gerber L, Gao AC (2003) Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells. Clin Cancer Res 9:370–376

    CAS  PubMed  Google Scholar 

  22. Campbell CL, Jiang Z, Savarese DM, Savarese TM (2001) Increased expression of the interleukin-11 receptor and evidence of STAT3 activation in prostate carcinoma. Am J Pathol 158:25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qiu Y, Ravi L, Kung HJ (1998) Requirement of ErbB2 for signaling by interleukin-6 in prostate carcinoma cells. Nature 393:83–85

    Article  CAS  PubMed  Google Scholar 

  24. Mora L, Buettner R, Seigne J et al (2002) Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 induces appoptosis of prostate cancer cells. Cancer Res 62:6659–6666

    CAS  PubMed  Google Scholar 

  25. Don-Doncow N, Marginean F, Loleman I et al (2017) Expression of STAT3 in prostate cancer metastasis. Eur Urol 71:313–316

    Article  CAS  PubMed  Google Scholar 

  26. Borsellino N, Bonavida B, Ciliberto G, Toniatti C, Travali S, D’Alessandro N (1999) Blocking signaling through the Gp130 chain by interleukin-6 and oncostatin M inhibits PC-3 cell growth and sensitizes the tumor cells to etoposide and cisplatin-mediated cytotoxicity. Cancer 85:124–144

    Article  Google Scholar 

  27. Shiota M, Bishop JL, Nip KM et al (2013) Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. Cancer Res 73:3109–3119

    Article  CAS  PubMed  Google Scholar 

  28. Kroon P, Berry PA, Stower MJ et al (2013) JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res 73:5288–5298

    Article  CAS  PubMed  Google Scholar 

  29. Qu Y, Qyan AM, Liu R et al (2013) Generation of prostate tumor-initiating cells is associated with elevation of reactive oxygen species and IL-6/STAT3 signaling. Cancer Res 73:7090–7100

    Article  CAS  PubMed  Google Scholar 

  30. Schroeder A, Herrmann A, Cherryholmes G et al (2014) Loss of androgen receptor expression in stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res 74:1227–1237

    Article  CAS  PubMed  Google Scholar 

  31. Erb HHH, Langlechner RV, Moser PL et al (2013) IL6 sensitizes prostate cancer to the antiproliferative effect of IFNalpha2 through IRF9. Endocr Relat Cancer 20:677–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ueda T, Bruchovsky N, Sadar MD (2002) Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem 277:7076–7085

    Article  CAS  PubMed  Google Scholar 

  33. Lin DL, Whitney MC, Yao Z, Keller ET (2001) Interleukin-6 induces androgen responsiveness in prostate cancer cells through up-regulation of androgen receptor expression. Clin Cancer Res 7:1773–1781

    CAS  PubMed  Google Scholar 

  34. Matsuda T, Junicho A, Yamamoto T et al (2001) Cross-talk between signal transducer and activator of transcription 3 and androgen receptor signaling in prostate carcinoma cells. Biochem Biophys Res Commun 283:179–187

    Article  CAS  PubMed  Google Scholar 

  35. Debes JD, Schmidt LJ, Huang H, Tindall DJ (2002) P300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6. Cancer Res 62:5632–5636

    CAS  PubMed  Google Scholar 

  36. Ueda T, Mawji NR, Bruchovsky N, Sadar MD (2002) Ligand-independent activation of the androgen receptor by interleukin-6 and the steroid receptor coactivator-1 in prostate cancer cells. J Biol Chem 277:38087–38094

    Article  CAS  PubMed  Google Scholar 

  37. Steiner H, Rogatsch H, Berger AP et al (2003) Accelerated in vivo growth of prostate tumors that up-regulate interleukin-6 is associated with reduced retinoblastoma protein expression and activation of the mitogen-activated protein signaling pathway. Am J Pathol 162:655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ge D, Gao AC, Zhang Q, Liu S, Xue Y, You Z (2012) LNCaP prostate cancer cells with autocrine interleukin-6 expression are resistant to induced neuroendocrine differentiation due to increased expression of suppressors of cytokine signaling. Prostate 72:1306–1316

    Article  CAS  PubMed  Google Scholar 

  39. Smith PC, Keller ET (2001) Anti-interleukin-6 monoclonal antibody induces regression of human prostate cancer xenografts in nude mice. Prostate 48:47–53

    Article  CAS  PubMed  Google Scholar 

  40. Wallner L, Dai J, Escara-Wilke J et al (2006) Inhibition of interleukin-6 with CNTO328, an anti-interleukin-6 monoclonal antibody, inhibits conversion to an androgen-independent phenotype in orchiectomized mice. Cancer Res 66:3087–3095

    Article  CAS  PubMed  Google Scholar 

  41. Cavarretta IT, Neuwirt H, Untergasser G et al (2007) The antiapoptotic effect of IL-6 autocrine loop in a cellular model of advanced prostate cancer is mediated by Mcl-1. Oncogene 26:2822–2832

    Article  CAS  PubMed  Google Scholar 

  42. Dorff T, Goldman B, Pinski J et al (2010) Clinical and correlative results of SWOG S0354: a phase II trial of CNTO 328 (siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin Cancer Res 16:3028–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fizazi K, de Bono JS, Flechon A et al (2012) Randomised phase II study of siltuximab (CNTO 328), an anti-IL-6 monoclonal antibody, in combination with mitoxantrone/prednisone versus mitoxantrone/prednisone in metastatic castration-resistant prostate cancer. Eur J Cancer 48:85–93

    Article  CAS  PubMed  Google Scholar 

  44. Handle F, Puhr M, Schäfer G et al (2018) The STAT3 inhibitor galiellalactone reduces IL-6-mediated AR activity in benign and malignant prostate models. Mol Cancer Ther 17:2722–2731

    Article  CAS  PubMed  Google Scholar 

  45. Puhr M, Santer FR, Neuwirt H et al (2009) Down-regulation of suppressor of cytokine signaling-3 causes prostate cancer cell death through activation of the extrinsic and intrinsic apoptosis pathways. Cancer Res 69:7375–7384

    Article  CAS  PubMed  Google Scholar 

  46. Neuwirt H, Puhr M, Santer FR et al (2009) Suppressor of cytokine signaling (SOCS)-1 is expressed in human prostate cancer and exerts growth-inhibitory function through down-regulation of cyclins and cyclin-dependent kinases. Am J Pathol 174:1921–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Puhr M, Hoefer J, Neuwirt H et al (2014) PIAS1 is a crucial factor for prostate cancer cell survival and a valid target in docetaxel resistant cells. Oncotarget 5:12043–12056

    Article  PubMed  PubMed Central  Google Scholar 

  48. Birbrair A, Zhang T, Wang ZM et al (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307:C25–C38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Culig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Culig, Z. (2021). Interleukin-6 Function and Targeting in Prostate Cancer. In: Birbrair, A. (eds) Tumor Microenvironment . Advances in Experimental Medicine and Biology, vol 1290. Springer, Cham. https://doi.org/10.1007/978-3-030-55617-4_1

Download citation

Publish with us

Policies and ethics