Skip to main content

Inferences on Mycobacterium Leprae Host Immune Response Escape and Antibiotic Resistance Using Genomic Data and GenomeFastScreen

  • Conference paper
  • First Online:
Practical Applications of Computational Biology & Bioinformatics, 14th International Conference (PACBB 2020) (PACBB 2020)

Abstract

The identification in bacteria, of the set of genes and amino acid positions showing evidence for positive selection, can give insight, among others, on which genes and amino acid positions are responsible for modulating the host immune response. However, such analyses are time consuming, and the frequency of genes showing evidence for positively selected amino acid sites (PSS) can be low. Therefore, the quick identification of the set of genes that likely show PSS can lead to great savings in both computational and research time. Here, we present GenomeFastScreen, a Compi-based pipeline distributed as a Docker image, that automates the process of identifying genes that likely show PSS, starting from a set of FASTA files, one per genome, containing all coding sequences. GenomeFastScreen automatically removes problematic sequences such as those showing ambiguous positions and identifies orthologous gene sets. It is also possible to identify the orthologous genes in an external reference species, a requirement for comparisons across species, or to conduct gene ontology enrichment analyses when there is no data for the species being analysed. An example of what can be achieved when using the GenomeFastScreen pipeline is given for Mycobacterium leprae that causes leprosy. In this species, after detailed analyses, PSS were found at 31 genes, including nine genes likely relevant in the context of leprosy. The orthologs of those genes in M. tuberculosum (the species used as external reference) are Rv3632 (a protein membrane gene), Rv0177 (a mce1 gene), PPE68 (a cell envelope protein), RpfB (a resuscitation-promoting factor), RecG (that provides protection against mitomycin C), lipQ and lipU (lipases) and Rv3220c and tesB1 (esterases). Therefore, the study of these genes may reveal interesting hints on the modulation of the different M. leprae phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.sing-group.org/compihub/explore/5d5bb64f6d9e31002f3ce30a.

  2. 2.

    https://www.sing-group.org/compihub/explore/5e2eaacce1138700316488c1.

  3. 3.

    https://www.sing-group.org/compihub/explore/5e2eaacce1138700316488c1.

  4. 4.

    https://github.com/pegi3s/pss-genome-fs.

  5. 5.

    https://hub.docker.com/r/pegi3s/pss-genome-fs.

  6. 6.

    https://pegi3s.github.io/dockerfiles/.

  7. 7.

    https://www.sing-group.org/compihub/explore/5e2db6f9e1138700316488be.

  8. 8.

    http://www.pantherdb.org/.

  9. 9.

    http://bpositive.i3s.up.pt/transcriptions?id=30.

References

  1. Yang, Z.: PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics 13, 555–556 (1997). https://doi.org/10.1093/bioinformatics/13.5.555

    Article  Google Scholar 

  2. Murrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Kosakovsky Pond, S.L., Scheffler, K.: FUBAR: a Fast, Unconstrained Bayesian AppRoximation for Inferring Selection. Mol. Biol. Evol. 30, 1196–1205 (2013). https://doi.org/10.1093/molbev/mst030

  3. Wilson, D.J., McVean, G.: Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 172, 1411–1425 (2006). https://doi.org/10.1534/genetics.105.044917

    Article  Google Scholar 

  4. López-Fernández, H., Duque, P., Vázquez, N., Fdez-Riverola, F., Reboiro-Jato, M., Vieira, C.P., Vieira, J.: Inferring positive selection in large viral datasets. In: Fdez-Riverola, F., Rocha, M., Mohamad, M.S., Zaki, N., Castellanos-Garzón, J.A. (eds.) 13th International Conference on Practical Applications of Computational Biology and Bioinformatics, pp. 61–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-23873-5_8

  5. Osório, N.S., Rodrigues, F., Gagneux, S., Pedrosa, J., Pinto-Carbó, M., Castro, A.G., Young, D., Comas, I., Saraiva, M.: Evidence for diversifying selection in a set of Mycobacterium tuberculosis genes in response to antibiotic- and nonantibiotic-related pressure. Mol. Biol. Evol. 30, 1326–1336 (2013). https://doi.org/10.1093/molbev/mst038

    Article  Google Scholar 

  6. Chavarro-Portillo, B., Soto, C.Y., Guerrero, M.I.: Mycobacterium leprae’s evolution and environmental adaptation. Acta Trop. 197, 105041 (2019). https://doi.org/10.1016/j.actatropica.2019.105041

    Article  Google Scholar 

  7. Shen, W., Le, S., Li, Y., Hu, F.: SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016). https://doi.org/10.1371/journal.pone.0163962

    Article  Google Scholar 

  8. López-Fernández, H., Duque, P., Henriques, S., Vázquez, N., Fdez-Riverola, F., Vieira, C.P., Reboiro-Jato, M., Vieira, J.: Bioinformatics protocols for quickly obtaining large-scale data sets for phylogenetic inferences. Interdiscip. Sci. Comput. Life Sci. 11, 1–9 (2019). https://doi.org/10.1007/s12539-018-0312-5

    Article  Google Scholar 

  9. Reboiro-Jato, D., Reboiro-Jato, M., Fdez-Riverola, F., Vieira, C.P., Fonseca, N.A., Vieira, J.: ADOPS–Automatic Detection Of Positively Selected Sites. J Integr Bioinform. 9, 200 (2012). https://doi.org/10.2390/biecoll-jib-2012-200

    Article  Google Scholar 

  10. Vázquez, N., Vieira, C.P., Amorim, B.S.R., Torres, A., López-Fernández, H., Fdez-Riverola, F., Sousa, J.L.R., Reboiro-Jato, M., Vieira, J.: Large scale analyses and visualization of adaptive amino acid changes projects. Interdiscip. Sci. Comput. Life Sci. 10, 24–32 (2018). https://doi.org/10.1007/s12539-018-0282-7

    Article  Google Scholar 

  11. Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). https://doi.org/10.1093/nar/gkh340

    Article  Google Scholar 

  12. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P.: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012). https://doi.org/10.1093/sysbio/sys029

  13. Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., Thomas, P.D.: PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 45, D183–D189 (2017). https://doi.org/10.1093/nar/gkw1138

    Article  Google Scholar 

  14. Casali, N., White, A.M., Riley, L.W.: Regulation of the Mycobacterium tuberculosis mce1 operon. J. Bacteriol. 188, 441–449 (2006). https://doi.org/10.1128/JB.188.2.441-449.2006

    Article  Google Scholar 

  15. Shimono, N., Morici, L., Casali, N., Cantrell, S., Sidders, B., Ehrt, S., Riley, L.W.: Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proc. Natl. Acad. Sci. 100, 15918–15923 (2003). https://doi.org/10.1073/pnas.2433882100

    Article  Google Scholar 

  16. Demangel, C., Brodin, P., Cockle, P.J., Brosch, R., Majlessi, L., Leclerc, C., Cole, S.T.: Cell envelope protein PPE68 contributes to Mycobacterium tuberculosis RD1 immunogenicity independently of a 10-kilodalton culture filtrate protein and ESAT-6. Infect. Immun. 72, 2170–2176 (2004). https://doi.org/10.1128/IAI.72.4.2170-2176.2004

    Article  Google Scholar 

  17. Squeglia, F., Romano, M., Ruggiero, A., Vitagliano, L., De Simone, A., Berisio, R.: Carbohydrate recognition by RpfB from Mycobacterium tuberculosis unveiled by crystallographic and molecular dynamics analyses. Biophys. J. 104, 2530–2539 (2013). https://doi.org/10.1016/j.bpj.2013.04.040

    Article  Google Scholar 

  18. Thakur, R.S., Basavaraju, S., Somyajit, K., Jain, A., Subramanya, S., Muniyappa, K., Nagaraju, G.: Evidence for the role of Mycobacterium tuberculosis RecG helicase in DNA repair and recombination. FEBS J. 280, 1841–1860 (2013). https://doi.org/10.1111/febs.12208

    Article  Google Scholar 

  19. Li, C., Li, Q., Zhang, Y., Gong, Z., Ren, S., Li, P., Xie, J.: Characterization and function of Mycobacterium tuberculosis H37Rv Lipase Rv1076 (LipU). Microbiol. Res. 196, 7–16 (2017). https://doi.org/10.1016/j.micres.2016.12.005

    Article  Google Scholar 

Download references

Acknowledgments

The SING group thanks the CITI (Centro de Investigación, Transferencia e Innovación) from the University of Vigo for hosting its IT infrastructure. This work was partially supported by the Consellería de Educación, Universidades e Formación Profesional (Xunta de Galicia) under the scope of the strategic funding ED431C2018/55-GRC Competitive Reference Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Fernández, H., Vieira, C.P., Fdez-Riverola, F., Reboiro-Jato, M., Vieira, J. (2021). Inferences on Mycobacterium Leprae Host Immune Response Escape and Antibiotic Resistance Using Genomic Data and GenomeFastScreen. In: Panuccio, G., Rocha, M., Fdez-Riverola, F., Mohamad, M., Casado-Vara, R. (eds) Practical Applications of Computational Biology & Bioinformatics, 14th International Conference (PACBB 2020). PACBB 2020. Advances in Intelligent Systems and Computing, vol 1240. Springer, Cham. https://doi.org/10.1007/978-3-030-54568-0_5

Download citation

Publish with us

Policies and ethics