Skip to main content

Prediction and Topological Models in Neuroscience

  • Chapter
  • First Online:
Neural Mechanisms

Part of the book series: Studies in Brain and Mind ((SIBM,volume 17))

Abstract

In the last two decades, philosophy of neuroscience has predominantly focused on explanation. Indeed, it has been argued that mechanistic models are the standards of explanatory success in neuroscience over, among other things, topological models. However, explanatory power is only one virtue of a scientific model. Another is its predictive power. Unfortunately, the notion of prediction has received comparatively little attention in the philosophy of neuroscience, in part because predictions seem disconnected from interventions. In contrast, we argue that topological predictions can and do guide interventions in science, both inside and outside of neuroscience. Topological models allow researchers to predict many phenomena, including diseases, treatment outcomes, aging, and cognition, among others. Moreover, we argue that these predictions also offer strategies for useful interventions. Topology-based predictions play this role regardless of whether they do or can receive a mechanistic interpretation. We conclude by making a case for philosophers to focus on prediction in neuroscience in addition to explanation alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is important to note that this decentering may not apply to other related areas of research, such as issues on confirmation and accommodation, both of which are related to the notion of prediction (see, for instance, Eells 2000). We thank a reviewer for inviting us to note this issue.

  2. 2.

    There are some views of mechanistic models that need not have such strong ontic commitments (e.g, Bechtel 2008) and/or that need not be committed to a manipulationist/counterfactual-dependent account of causation. It is possible that some of the arguments we discuss here do not necessarily apply to these accounts. We don’t discuss these accounts in depth, in part because they are not as thoroughly developed in the philosophy of neuroscience. Thanks to a reviewer for inviting us to clarify this point.

  3. 3.

    We see successful predictions as those which accurately model alternative outcomes (and thus support counterfactuals to some degree), or model future states with accuracy significantly above chance. In short, good predictions estimate outcomes above randomness. Note that, on this view, how-actually and how-possibly models can both yield successful predictions; however, how-actually models may not always make predictions that are perfectly accurate, since their use is often limited to certain contexts (consider the difference between Newtonian and relativistic physics, for example).

  4. 4.

    A clarification: we are not saying that Craver is necessarily committed to the strong reading. As far as we know, partisans of mechanisms have said little as to whether or not predictive models also demand the same ontic commitments that explanatory models do. Our view should rather be seen, then, as an admonition to the effect that even if one adopts a mechanistic stance vis-à-vis the way in which neuroscience ought to be pursued, then the strong ontic commitments that have been argued for explanation need not apply to prediction too.

  5. 5.

    We say that a scale-free architecture “suggests” this organization of individuals because, while not a mathematical guarantee, it appears likely to be so. In a scale-free network architecture, statically speaking, some of the high-degree nodes will be provincial hubs and some of the high-degree nodes will be connector hubs. Granted, it is not the case that networks must not follow this principle; in some scale-free networks, all the high-degree nodes might be connectors. But this seems statistically unlikely as then distinct modules are unlikely to exist. If the high-degree nodes are “randomly” arranged, then some must be connectors and some must be provincial. In other words, in scale-free networks, the nodes at the far end of the distribution have considerable influence over the other nodes in the network, more so than in other kinds of networks with other kinds of degree distributions. Some of these nodes with very many connections are likely to interconnect many different communities and be essential (in the example from the text) for diseases to propagate throughout the network.

References

  • Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17.

    Article  Google Scholar 

  • Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26, 63–72.

    Article  Google Scholar 

  • Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270–279.

    Article  Google Scholar 

  • Barrett, J., & Stanford, P. K. (2006). Prediction. In S. Sarkar & J. Pfeifer (Eds.), The philosophy of science: An encyclopedia. New York: Routledge.

    Google Scholar 

  • Bassett, D. S., Meyer-Lindenberg, A., Achard, S., Duke, T., & Bullmore, E. (2006). Adaptive reconfiguration of fractal small-world human brain functional networks. Proceedings of the National Academy of Sciences, 103(51), 19518–19523.

    Article  Google Scholar 

  • Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D. R., & Meyer-Lindenberg, A. (2008). Hierarchical organization of human cortical networks in health and schizophrenia. Journal of Neuroscience, 28(37), 9239–9248.

    Article  Google Scholar 

  • Battaglia, F. P., Benchenane, K., Sirota, A., Pennartz, C. M., & Wiener, S. I. (2011). The hippocampus: Hub of brain network communication for memory. Trends in Cognitive Sciences, 15(7), 310–318.

    Google Scholar 

  • Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Sciences, 36(2), 421–441.

    Article  Google Scholar 

  • Bechtel, William (2008). Mechanisms in cognitive psychology: What are the operations?. Philosophy of Science, 75(5):983–994.

    Google Scholar 

  • Betzel, R. F., & Bassett, D. S. (2017). Multi-scale brain networks. NeuroImage, 160, 73–83.

    Article  Google Scholar 

  • Betzel, R. F., Medaglia, J. D., Kahn, A. E., Soffer, J., Schonhaut, D. R., & Bassett, D. S. (2019). Structural, geometric and genetic factors predict interregional brain connectivity patterns probed by electrocorticography. Nature Biomedical Engineering, 1.

    Google Scholar 

  • Bromberger, S. (1966). Questions. Journal of Philosophy, 63(20), 597–606.

    Article  Google Scholar 

  • Butts, C. T. (2009). Revisiting the foundations of network analysis. Science, 325(5939), 414–416.

    Article  Google Scholar 

  • Colby, J. B., Rudie, J. D., Brown, J. A., Douglas, P. K., Cohen, M. S., & Shehzad, Z. (2012). Insights into multimodal imaging classification of ADHD. Frontiers in Systems Neuroscience, 6, 59.

    Article  Google Scholar 

  • Collingridge, G. L., Kehl, S. J., & McLennan, H. T. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. The Journal of Physiology, 334(1), 33–46.

    Article  Google Scholar 

  • Craver, C. F. (2007). Explaining the brain: mechanisms and the mosaic unity of neuroscience. Oxford/Ann Arbor: Oxford University Press/Clarendon Press.

    Book  Google Scholar 

  • Craver, C. F. (2014). The ontic account of scientific explanation. In M. I. Kaiser, O. R. Scholz, D. Plenge, & A. Hüttemann (Eds.), Explanation in the special sciences: The case of biology and history (pp. 27–52). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Craver, C. F. (2016). The explanatory power of network models. Philosophy of Science, 83(5), 698–709.

    Article  Google Scholar 

  • Craver, C. F., & Darden, L. (2013). In search of mechanisms: Discoveries across the life sciences. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Craver, C. F., & Povich, M. (2017). The directionality of distinctively mathematical explanations. Studies in History and Philosophy of Science Part A, 63, 31–38.

    Article  Google Scholar 

  • Craver, C., & Tabery, J. (2015). Mechanisms in science. In Edward N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Summer 2019 Edition). forthcoming. https://plato.stanford.edu/archives/sum2019/entries/science-mechanisms/

  • Darden, L. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69(S3), 342–353.

    Article  Google Scholar 

  • De Brigard, F. (2017). Cognitive systems and the changing brain. Philosophical Explorations, 20(2): 224–241

    Google Scholar 

  • delEtoile, J., & Adeli, H. (2017). Graph theory and brain connectivity in Alzheimer’s disease. The Neuroscientist, 23(6), 616–626.

    Article  Google Scholar 

  • Deuker, L., Bullmore, E. T., Smith, M., Christensen, S., Nathan, P. J., Rockstroh, B., & Bassett, D. S. (2009). Reproducibility of graph metrics of human brain functional networks. NeuroImage, 47(4), 1460–1468.

    Article  Google Scholar 

  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.

    Article  Google Scholar 

  • Douglas, H. E. (2009). Reintroducing prediction to explanation. Philosophy of Science, 76(4), 444–463.

    Article  Google Scholar 

  • Douglas, H., & Magnus, P. D. (2013). State of the field: Why novel prediction matters. Studies in History and Philosophy of Science Part A, 44(4), 580–589.

    Article  Google Scholar 

  • Drachman, D. (2005, June). Do we have brain to spare? Neurology, 64(12).

    Google Scholar 

  • Eguíluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M., & Apkarian, A. V. (2005). Scale-free brain functional networks. Physical Review Letters, 94, 018102.

    Article  Google Scholar 

  • Eells, E., & Fitelson, B. (2000). Measuring confirmation and evidence. Journal of Philosophy, 97(12), 663–672.

    Article  Google Scholar 

  • Geib, B. R., Stanley, M. L., Wing, E. A., Laurienti, P. J., & Cabeza, R. (2017a). Hippocampal contributions to the large-scale episodic memory network predict vivid visual memories. Cerebral Cortex, 27(1), 680–693.

    Article  Google Scholar 

  • Geib, B. R., Stanley, M. L., Dennis, N. A., Woldorff, M. G., & Cabeza, R. (2017b). From hippocampus to whole-brain: The role of integrative processing in episodic memory retrieval. Human Brain Mapping, 38(4), 2242–2259.

    Article  Google Scholar 

  • Glennan, S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69(S3), S342–S353.

    Article  Google Scholar 

  • Gong, Q., & He, Y. (2015). Depression, neuroimaging and connectomics: A selective overview. Biological Psychiatry, 77(3), 223–235.

    Article  Google Scholar 

  • Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., & Beaulieu, C. (2008). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19(3), 524–536.

    Article  Google Scholar 

  • Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159.

    Article  Google Scholar 

  • Hanson, N. R. (1959). Copenhagen interpretation of quantum theory. American Journal of Physics, 27(1), 1–15.

    Article  Google Scholar 

  • He, Y., Chen, Z. J., & Evans, A. C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex, 17, 2407–2419.

    Article  Google Scholar 

  • He, X., Doucet, G. E., Pustina, D., Sperling, M. R., Sharan, A. D., & Tracy, J. I. (2017). Presurgical thalamic “hubness” predicts surgical outcome in temporal lobe epilepsy. Neurology, 88(24), 2285–2293.

    Article  Google Scholar 

  • Helmer, O., & Rescher, N. (1959). On the epistemology of the inexact sciences. Management Science, 6(1), 25–52.

    Article  Google Scholar 

  • Hempel, C. (1965). Aspects of scientific explanation and other essays in the philosophy of science. New York: The Free Press.

    Google Scholar 

  • Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15(2), 135–175.

    Article  Google Scholar 

  • Hofstadter, A. (1951). Explanation and necessity. Philosophy and Phenomenological Research, 11, 339–347.

    Article  Google Scholar 

  • Hojjati, S. H., Ebrahimzadeh, A., Khazaee, A., Babajani-Feremi, A., & Initiative, A.’s. D. N. (2017). Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. Journal of Neuroscience Methods, 282, 69–80.

    Article  Google Scholar 

  • Hume, D. (1748). An enquiry concerning human understanding. Glasgow.

    Google Scholar 

  • Huneman, P. (2010). Topological explanations and robustness in biological sciences. Synthese, 177(2), 213–245.

    Article  Google Scholar 

  • Jolly, A. M., & Wylie, J. L. (2002). Gonorrhoea and chlamydia core groups and sexual networks in Manitoba. Sexually Transmitted Infections, 78(suppl 1), i145–i151.

    Article  Google Scholar 

  • Kaplan, D. M., & Craver, C. F. (2011). The explanatory force of dynamical and mathematical models in neuroscience: A mechanistic perspective. Philosophy of Science, 78(4), 601–627.

    Article  Google Scholar 

  • Khazaee, A., Ebrahimzadeh, A., & Babajani-Feremi, A. (2015). Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory. Clinical Neurophysiology, 126(11), 2132–2141.

    Article  Google Scholar 

  • Khazaee, A., Ebrahimzadeh, A., & Babajani-Feremi, A. (2016). Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease. Brain Imaging and Behavior, 10(3), 799–817.

    Article  Google Scholar 

  • Kitcher, P. (1989). Explanatory unification and the causal structure of the world. In P. Kitcher & W. Salmon (Eds.), Scientific explanation (pp. 410–505). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Klein, C. (2012). Cognitive ontology and region- versus network-oriented analyses. Philosophy of Science, 79(5), 952–960.

    Article  Google Scholar 

  • Lakatos, I., & Musgrave, A. (Eds.). (1970). Criticism and the growth of knowledge: Volume 4: Proceedings of the international colloquium in the philosophy of science, 1965. London:. Cambridge University Press.

    Google Scholar 

  • Lange, M. (2013). What makes a scientific explanation distinctively mathematical? British Journal for the Philosophy of Science, 64(3), 485–511.

    Article  Google Scholar 

  • Lange, M. (2016). Because without cause: Non-causal explanations in science and mathematics. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Liljeros, F., Edling, C. R., Amaral, L. A. N., Stanley, H. E., & Åberg, Y. (2001). The web of human sexual contacts. Nature, 411(6840), 907.

    Article  Google Scholar 

  • Longino, H. (2002). The fate of knowledge. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Machamer, P. K., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25.

    Article  Google Scholar 

  • Micheloyannis, S., Pachou, E., Stam, C. J., Vourkas, M., Erimaki, S., & Tsirka, V. (2006). Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neuroscience Letters, 402(3), 273–277.

    Article  Google Scholar 

  • Mill, J. (1843). A system of logic, ratiocinative and inductive. London.

    Google Scholar 

  • Monge, Z. A., Geib, B. R., Siciliano, R. E., Packard, L. E., Tallman, C. W., & Madden, D. J. (2017). Functional modular architecture underlying attentional control in aging. NeuroImage, 155, 257–270.

    Article  Google Scholar 

  • Muldoon, S. F., & Bassett, D. S. (2016). Network and multilayer network approaches to understanding human brain dynamics. Philosophy of Science, 83(5), 710–720.

    Article  Google Scholar 

  • Nagel, E. (1961). The structure of science. New York: Harcourt, Brace & World.

    Book  Google Scholar 

  • Newman, M. (2010). Networks: An introduction. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Park, P., Volianskis, A., Sanderson, T. M., Bortolotto, Z. A., Jane, D. E., Zhuo, M., et al. (2014). NMDA receptor-dependent long-term potentiation comprises a family of temporally overlapping forms of synaptic plasticity that are induced by different patterns of stimulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1633), 20130131.

    Article  Google Scholar 

  • Povich, Mark & Craver, Carl F. (2018). Because without Cause: Non-Causal Explanations in Science and Mathematics. Philosophical Review, 127(3):422–426.

    Google Scholar 

  • Popper, K. (1963). Conjectures and refutations: The growth of scientific knowledge. London: Routledge & Kegan Paul.

    Google Scholar 

  • Potterat, J. J., Muth, S. Q., Rothenberg, R. B., Zimmerman-Rogers, H., Green, D. L., Taylor, J. E., et al. (2002). Sexual network structure as an indicator of epidemic phase. Sexually Transmitted Infections, 78(suppl 1), i152–i158.

    Article  Google Scholar 

  • Rothenberg, R. B., Potterat, J. J., Woodhouse, D. E., Muth, S. Q., Darrow, W. W., & Klovdahl, A. S. (1998). Social network dynamics and HIV transmission. AIDS, 12(12), 1529–1536.

    Article  Google Scholar 

  • Sacchet, M. D., Prasad, G., Foland-Ross, L. C., Thompson, P. M., & Gotlib, I. H. (2015). Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory. Frontiers in Psychiatry, 6, 21.

    Article  Google Scholar 

  • Salmon, W. (1971). Statistical explanation & statistical relevance. Pittsburgh: University of Pittsburgh Press.

    Book  Google Scholar 

  • Salmon, W. C. (1978). Unfinished business: The problem of induction. Philosophical Studies, 33(1), 1–19.

    Article  Google Scholar 

  • Salmon, W. (1984). Scientific explanation and the causal structure of the world. Princeton: Princeton University Press.

    Google Scholar 

  • Salvador, R., Suckling, J., Schwarzbauer, C., & Bullmore, E. (2005). Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1457), 937–946.

    Article  Google Scholar 

  • Sarigöl, E., Pfitzner, R., Scholtes, I., Garas, A., & Schweitzer, F. (2014). Predicting scientific success based on coauthorship networks. EPJ Data Science, 3(1), 9.

    Article  Google Scholar 

  • Scheffler, I. (1957). Explanation, prediction, and abstraction. The British Journal for the Philosophy of Science, 7(28), 293–309.

    Article  Google Scholar 

  • Schindler, S. (2018). Theoretical virtues in science: Uncovering reality through theory. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Scriven, M. (1959). Explanation and prediction in evolutionary theory. Science, 130(3374), 477–482.

    Article  Google Scholar 

  • Sporns, O. (2011). The human connectome: a complex network. Annals of the New York Academy of Sciences, 1224(1), 109–125.

    Article  Google Scholar 

  • Sporns, O., & Kötter, R. (2004). Motifs in brain networks. PLoS Biology, 2(11), e369.

    Article  Google Scholar 

  • Stam, C. J. (2004). Functional connectivity patterns of human magnetoencephalographic recordings: A ‘small-world’ network? Neuroscience Letters, 355(1–2), 25–28.

    Article  Google Scholar 

  • Stam, C. J. (2014). Modern network science of neurological disorders. Nature Reviews Neuroscience, 15(10), 683.

    Article  Google Scholar 

  • Stam, C. J., Nolte, G., & Daffertshofer, A. (2007). Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28(11), 1178–1193.

    Article  Google Scholar 

  • Stanley, M. L., Moussa, M. N., Paolini, B., Lyday, R. G., Burdette, J. H., & Laurienti, P. J. (2013). Defining nodes in complex brain networks. Frontiers in Computational Neuroscience, 7, 169.

    Article  Google Scholar 

  • Towlson, E. K., Vértes, P. E., Ahnert, S. E., Schafer, W. R., & Bullmore, E. T. (2013). The rich club of the C. elegans neuronal connectome. Journal of Neuroscience, 33(15), 6380–6387.

    Article  Google Scholar 

  • van den Heuvel, M. P., Stam, C. J., Boersma, M., & Pol, H. H. (2008). Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. NeuroImage, 43(3), 528–539.

    Article  Google Scholar 

  • Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., et al. (2009). Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. Human Brain Mapping, 30(5), 1511–1523.

    Article  Google Scholar 

  • Wang, P., Hunter, T., Bayen, A. M., Schechtner, K., & González, M. C. (2012). Understanding road usage patterns in urban areas. Scientific Reports, 2, 1001.

    Article  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440.

    Article  Google Scholar 

  • Whewell, W. (1840). The philosophy of the inductive science. London.

    Google Scholar 

  • Woodhouse, D. E., Rothenberg, R. B., Potterat, J. J., Darrow, W. W., Muth, S. Q., Klovdahl, A. S., et al. (1994). Mapping a social network of heterosexuals at high risk for HIV infection. AIDS, 8(9), 1331–1336.

    Article  Google Scholar 

  • Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford: Oxford University Press.

    Google Scholar 

  • Wylie, J. L., & Jolly, A. (2001). Patterns of chlamydia and gonorrhea infection in sexual networks in Manitoba, Canada. Sexually Transmitted Diseases, 28(1), 14–24.

    Article  Google Scholar 

  • Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe De Brigard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gessell, B., Stanley, M., Geib, B., De Brigard, F. (2021). Prediction and Topological Models in Neuroscience. In: Calzavarini, F., Viola, M. (eds) Neural Mechanisms. Studies in Brain and Mind, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-54092-0_3

Download citation

Publish with us

Policies and ethics