Skip to main content

Toward Imaging Tropomyosin Receptor Kinase (Trk) with Positron Emission Tomography

  • Chapter
  • First Online:
PET and SPECT of Neurobiological Systems

Abstract

The three tropomyosin receptor kinases (TrkA, B, and C) fulfill important roles within the central nervous system facilitating neuronal growth, neuronal survival, and neuronal differentiation during cell development at all ages of neuronal development. The downregulation of TrkA, B, and C has been identified as an important hallmark of a plethora of neurological diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). In oncology, Trks have been recognized as tumorigenic drivers. Full-length Trk as well as fusion proteins composed of the kinase portion of the full-length receptor and various other cancer-related proteins has been reported, and the targeting of these receptors for a contingent Trk-based therapy has recently caught momentum in the wake of precision medicine evolvement. Both in neurology and oncology, the spatiotemporal changes in Trk expression can only be reviewed via destructive and invasive methods such as taking a tumor biopsy. The quantification of Trk density in neurodegeneration (e.g., AD and PD) as well as cancer treatment, where therapeutic Trk target engagement of antineoplastic Trk inhibitors with Trk fusion proteins is the site of therapeutic action, has triggered the need for a noninvasive methodology to quantify Trk in vivo in these Trk-altering conditions. Positron emission tomography (PET), a noninvasive imaging methodology, relying on the highly sensitive detection of radiation, has the potential to take advantage of radioactively labeled probes binding to the kinase domain of Trk to not only reveal the location of Trk but allow for the quantification of receptor density. This article covers the most recent developments in Trk tracer evolution for PET imaging and their first human in vivo application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen SJ, Wilcock GK, Dawbarn D (1999) Profound and selective loss of catalytic TrkB immunoreactivity in Alzheimer’s disease. Biochem Biophys Res Commun 264(3):648–651

    Article  CAS  PubMed  Google Scholar 

  • Altar CA et al (1991a) Recombinant human nerve growth factor is biologically active and labels novel high-affinity binding sites in rat brain. Proc Natl Acad Sci U S A 88(1):281–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altar C et al (1991b) Medial-to-lateral gradient of neostriatal NGF receptors: relationship to cholinergic neurons and NGF-like immunoreactivity. J Neurosci 11(3):828–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson KD et al (1995) Differential distribution of exogenous BDNF, NGF, and NT-3 in the brain corresponds to the relative abundance and distribution of high-affinity and low-affinity neurotrophin receptors. J Comp Neurol 357(2):296–317

    Article  CAS  PubMed  Google Scholar 

  • Bailey JJ et al (2017a) Tropomyosin receptor kinase inhibitors: an updated patent review for 2010-2016—part I. Expert Opin Ther Pat 27(6):733–751

    Article  CAS  PubMed  Google Scholar 

  • Bailey JJ et al (2017b) Tropomyosin receptor kinase inhibitors: an updated patent review for 2010-2016—part II. Expert Opin Ther Pat 27(7):831–849

    Article  CAS  PubMed  Google Scholar 

  • Bailey JJ et al (2019) First-in-human brain imaging of [18F]TRACK, a PET tracer for tropomyosin receptor kinases. ACS Chem Neurosci 10(6):2697–2702

    Article  CAS  PubMed  Google Scholar 

  • Bernard-Gauthier V, Schirrmacher R (2014) 5-(4-((4-[18F]fluorobenzyl)oxy)-3-methoxybenzyl)pyrimidine-2,4-diamine: a selective dual inhibitor for potential PET imaging of Trk/CSF-1R. Bioorg Med Chem Lett 24(20):4784–4790

    Article  CAS  PubMed  Google Scholar 

  • Bernard-Gauthier V et al (2013) Towards tropomyosin-related kinase B (TrkB) receptor ligands for brain imaging with PET: Radiosynthesis and evaluation of 2-(4-[18F]fluorophenyl)-7,8-dihydroxy-4H-chromen-4-one and 2-(4-([N-methyl-11C]-dimethylamino)phenyl)-7,8-dihydroxy-4H-chromen-4-one. Bioorg Med Chem 21(24):7816–7829

    Article  CAS  PubMed  Google Scholar 

  • Bernard-Gauthier V et al (2015a) Syntheses and evaluation of Carbon-11- and Fluorine-18-radiolabeled pan-tropomyosin receptor kinase (Trk) inhibitors: exploration of the 4-Aza-2-oxindole scaffold as Trk PET imaging agents. ACS Chem Neurosci 6(2):260–276

    Article  CAS  PubMed  Google Scholar 

  • Bernard-Gauthier V et al (2015b) Development of subnanomolar radiofluorinated (2-pyrrolidin-1-yl)imidazo[1,2-b]pyridazine pan-Trk inhibitors as candidate PET imaging probes. MedChemComm 6(12):2184–2193

    Article  CAS  Google Scholar 

  • Bernard-Gauthier V et al (2017a) Design and synthesis of a fluorinated quinazoline-based type-II Trk inhibitor as a scaffold for PET radiotracer development. Bioorg Med Chem Lett 27(12):2771–2775

    Article  CAS  PubMed  Google Scholar 

  • Bernard-Gauthier V et al (2017b) A Kinome-wide selective radiolabeled TrkB/C inhibitor for in vitro and in vivo neuroimaging: synthesis, preclinical evaluation, and first-in-human. J Med Chem 60(16):6897–6910

    Article  CAS  PubMed  Google Scholar 

  • Bernard-Gauthier V et al (2018) Identification of [18F]TRACK, a Fluorine-18-labeled tropomyosin receptor kinase (Trk) inhibitor for PET imaging. J Med Chem 61(4):1737–1743

    Article  CAS  PubMed  Google Scholar 

  • Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors (Chur, Switzerland) 22(3):123–131

    Article  CAS  Google Scholar 

  • Boltaev U et al (2017) Multiplex quantitative assays indicate a need for reevaluating reported small-molecule TrkB agonists. Sci Signal 10(493):eaal1670

    Article  PubMed  Google Scholar 

  • Brooks AF et al (2014) Late-stage [(18)F]fluorination: new solutions to old problems. Chem Sci 5(12):4545–4553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castello NA et al (2014) 7,8-Dihydroxyflavone, a small molecule TrkB agonist, improves spatial memory and increases thin spine density in a mouse model of Alzheimer disease-like neuronal loss. PLoS One 9(3):e91453

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao MV (1992) Neurotrophin receptors: a window into neuronal differentiation. Neuron 9(4):583–593

    Article  CAS  PubMed  Google Scholar 

  • Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299–309

    Article  CAS  PubMed  Google Scholar 

  • Cocco E, Scaltriti M, Drilon A (2018) NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 15(12):731–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng V et al (2007) FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice. Hum Mol Genet 16(6):640–650

    Article  CAS  PubMed  Google Scholar 

  • Devi L, Ohno M (2015) TrkB reduction exacerbates Alzheimer’s disease-like signaling aberrations and memory deficits without affecting β-amyloidosis in 5XFAD mice. Transl Psychiatry 5(5):e562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenner BM (2012) Truncated TrkB: beyond a dominant negative receptor. Cytokine Growth Factor Rev 23(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Fenner ME, Achim CL, Fenner BM (2014) Expression of full-length and truncated trkB in human striatum and substantia nigra neurons: implications for Parkinson’s disease. J Mol Histol 45(3):349–361

    Article  CAS  PubMed  Google Scholar 

  • Ferrer I et al (1999) BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies. J Neuropathol Exp Neurol 58(7):729–739

    Article  CAS  PubMed  Google Scholar 

  • Géral C, Angelova A, Lesieur S (2013) From molecular to nanotechnology strategies for delivery of Neurotrophins: emphasis on brain-derived neurotrophic factor (BDNF). Pharmaceutics 5(1):127–167

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta VK et al (2013) TrkB receptor signalling: implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 14(5):10122–10142

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsiao SJ et al (2019) Detection of tumor NTRK gene fusions to identify patients who may benefit from tyrosine kinase (TRK) inhibitor therapy. J Mol Diagn 21(4):553–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72(1):609–642

    Article  CAS  PubMed  Google Scholar 

  • Jang S-W et al (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A 107(6):2687–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10(3):381–391

    Article  CAS  PubMed  Google Scholar 

  • Khotskaya YB et al (2017) Targeting TRK family proteins in cancer. Pharmacol Ther 173:58–66

    Article  CAS  PubMed  Google Scholar 

  • Lange AM, Lo H-W (2018) Inhibiting TRK proteins in clinical cancer therapy. Cancers 10(4):105

    Article  PubMed Central  Google Scholar 

  • Lemaire C et al (2012) Fast and reliable method for the preparation of ortho- and Para-[18F]fluorobenzyl halide derivatives: key intermediates for the preparation of no-carrier-added PET aromatic radiopharmaceuticals. J Fluor Chem 138:48–55

    Article  CAS  Google Scholar 

  • Lessmann V, Gottmann K, Malcangio M (2003) Neurotrophin secretion: current facts and future prospects. Prog Neurobiol 69(5):341–374

    Article  CAS  PubMed  Google Scholar 

  • Li N, Liu G-t (2010) The novel squamosamide derivative FLZ enhances BDNF/TrkB/CREB signaling and inhibits neuronal apoptosis in APP/PS1 mice. Acta Pharmacol Sin 31(3):265–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Luberg K et al (2010) Human TrkB gene: novel alternative transcripts, protein isoforms and expression pattern in the prefrontal cerebral cortex during postnatal development. J Neurochem 113(4):952–964

    Article  CAS  PubMed  Google Scholar 

  • Märkl B, Hirschbühl K, Dhillon C (2019) NTRK-fusions—a new kid on the block. Pathol Res Pract 215(10):152572

    Article  PubMed  Google Scholar 

  • Massa SM et al (2010) Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J Clin Invest 120(5):1774–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlio JP et al (1992) Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trk family in the rat central nervous system. Neuroscience 51(3):513–532

    Article  CAS  PubMed  Google Scholar 

  • Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63(1):71–124

    Article  CAS  PubMed  Google Scholar 

  • Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10:209

    Article  CAS  PubMed  Google Scholar 

  • Oyesiku NM et al (1999) Regional changes in the expression of neurotrophic factors and their receptors following acute traumatic brain injury in the adult rat brain. Brain Res 833(2):161–172

    Article  CAS  PubMed  Google Scholar 

  • Pike VW (2009) PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci 30(8):431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poo M-M (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2(1):24–32

    Article  CAS  PubMed  Google Scholar 

  • Preshlock S, Tredwell M, Gouverneur V (2016) 18F-labeling of Arenes and Heteroarenes for applications in positron emission tomography. Chem Rev 116(2):719–766

    Article  CAS  PubMed  Google Scholar 

  • Rankovic Z (2015) CNS drug design: balancing physicochemical properties for optimal brain exposure. J Med Chem 58(6):2584–2608

    Article  CAS  PubMed  Google Scholar 

  • Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc B Biol Sci 361(1473):1545–1564

    Article  CAS  Google Scholar 

  • Reinhart V et al (2015) Evaluation of TrkB and BDNF transcripts in prefrontal cortex, hippocampus, and striatum from subjects with schizophrenia, bipolar disorder, and major depressive disorder. Neurobiol Dis 77:220–227

    Article  CAS  PubMed  Google Scholar 

  • Saba J et al (2018) Astrocyte truncated tropomyosin receptor kinase B mediates brain-derived neurotrophic factor anti-apoptotic effect leading to neuroprotection. J Neurochem 146(6):686–702

    Article  CAS  PubMed  Google Scholar 

  • Savaskan E et al (2000) Alterations in Trk a, Trk B and Trk C receptor immunoreactivities in parietal cortex and cerebellum in Alzheimer’s disease. Eur Neurol 44(3):172–180

    Article  CAS  PubMed  Google Scholar 

  • Song J-H, Yu J-T, Tan L (2015) Brain-derived neurotrophic factor in Alzheimer’s disease: risk, mechanisms, and therapy. Mol Neurobiol 52(3):1477–1493

    Article  CAS  PubMed  Google Scholar 

  • Tejeda GS, Díaz-Guerra M (2017) Integral characterization of defective BDNF/TrkB signalling in neurological and psychiatric disorders leads the way to new therapies. Int J Mol Sci 18(2):268

    Article  PubMed Central  Google Scholar 

  • Tredwell M et al (2014) A general copper-mediated nucleophilic 18F fluorination of arenes. Angew Chem Int Ed Engl 53(30):7751–7755

    Article  CAS  PubMed  Google Scholar 

  • Van de Bittner GC, Ricq EL, Hooker JM (2014) A philosophy for CNS radiotracer design. Acc Chem Res 47(10):3127–3134

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood ER et al (2004) Discovery and in vitro evaluation of potent TrkA kinase inhibitors: oxindole and aza-oxindoles. Bioorg Med Chem Lett 14(4):953–957

    Article  CAS  PubMed  Google Scholar 

  • Yan W et al (2019) Insights into current tropomyosin receptor kinase (TRK) inhibitors: development and clinical application. J Med Chem 62(4):1731–1760

    Article  CAS  PubMed  Google Scholar 

  • Zhang F et al (2012) Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signalling in Alzheimer’s disease. J Clin Neurosci 19(7):946–949

    Article  CAS  PubMed  Google Scholar 

  • Zhang L et al (2013) Design and selection parameters to accelerate the discovery of novel central nervous system positron emission tomography (PET) ligands and their application in the development of a novel phosphodiesterase 2A PET ligand. J Med Chem 56(11):4568–4579

    Article  CAS  PubMed  Google Scholar 

  • Zlatopolskiy BD et al (2015) Copper-mediated aromatic radiofluorination revisited: efficient production of PET tracers on a preparative scale. Chem Eur J 21(15):5972–5979

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Schirrmacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schirrmacher, R., Bernard-Gauthier, V., Jaworski, C., Wängler, C., Wängler, B., Bailey, J. (2021). Toward Imaging Tropomyosin Receptor Kinase (Trk) with Positron Emission Tomography. In: Dierckx, R.A., Otte, A., de Vries, E.F., van Waarde, A., Lammertsma, A.A. (eds) PET and SPECT of Neurobiological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-53176-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53176-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53175-1

  • Online ISBN: 978-3-030-53176-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics