Skip to main content

Convolutional Neural Networks for Fiber Orientation Distribution Enhancement to Improve Single-Shell Diffusion MRI Tractography

  • Conference paper
  • First Online:
Computational Diffusion MRI

Abstract

Diffusion MRI (dMRI) tractography may help locate critical white matter (WM) tracts that should be preserved during neurosurgery. A key step in this process is estimating fiber orientation distribution (FOD), often done from a model such as constrained spherical deconvolution (CSD). Multi-shell (MS) multi-tissue CSD (M-CSD) provides a robust WM FOD by estimating the relative contribution to the dMRI signal from each tissue type (WM, grey matter, and cerebrospinal fluid), however, single-shell (SS) single tissue CSD (S-CSD) cannot independently estimate the signal contribution for each tissue type. S-CSD is therefore less accurate estimating FOD in voxels where multiple tissues are present. Due to that inaccuracy, tractography using S-CSD often generates more spurious WM streamlines compared to M-CSD. In this work, we present a framework to regress the M-CSD model coefficients from the S-CSD model coefficients using a convolutional neural network (CNN) in order to improve tractography. We construct a training dataset comprising acquired MS dMRI and paired synthetic SS dMRI, generated by selecting the outer shell from the MS dMRI. We select a High Resolution Network (HighResNet) as our choice of CNN to ensure subtle details of the CSD models are preserved during regression. The HighResNet is trained to perform patch-based regression from the S-CSD model coefficients and a co-registered T1-wieghted MR (T1) to the M-CSD model coefficients. We evaluate the method on patients with epilepsy who appeared structurally normal on T1. Four WM tracts related to language are extracted using a ROI-based probabilistic tractography. For comparison, M-CSD is as a pseudo ground truth. The original S-CSD generated tracts with Dice of 0.53–0.64, and the HighResNet regressed CSD models generated tracts with Dice of 0.73–0.77. We demonstrate HighResNet can regress M-CSD model coefficients from S-CSD model coefficients resulting in tracts more similar to the M-CSD generated tracts and with fewer spurious streamlines than S-CSD generated tracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, D.C., Zikic, D., Ghosh, A., Tanno, R., Wottschel, V., Zhang, J., Kaden, E., Dyrby, T.B., Sotiropoulos, S.N., Zhang, H., et al.: Image quality transfer and applications in diffusion MRI. NeuroImage 152, 283–298 (2017)

    Article  Google Scholar 

  2. Berman, J.: Diffusion mr tractography as a tool for surgical planning. Magn. Reson. Imaging Clin. North Am. 17(2), 205–214 (2009)

    Article  Google Scholar 

  3. Blumberg, S.B., Tanno, R., Kokkinos, I., Alexander, D.C.: Deeper image quality transfer: training low-memory neural networks for 3d images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 118–125. Springer, Berlin (2018)

    Google Scholar 

  4. Calamante, F., Tournier, J.D., Jackson, G.D., Connelly, A.: Track-density imaging (tdi): super-resolution white matter imaging using whole-brain track-density mapping. Neuroimage 53(4), 1233–1243 (2010)

    Article  Google Scholar 

  5. Cardoso, M.J., Modat, M., Wolz, R., Melbourne, A., Cash, D., Rueckert, D., Ourselin, S.: Geodesic information flows: spatially-variant graphs and their application to segmentation and fusion. IEEE Trans. Med. Imaging 34(9), 1976–1988 (2015)

    Google Scholar 

  6. Daducci, A., Canales-Rodrı, E.J., Descoteaux, M., Garyfallidis, E., Gur, Y., Lin, Y.C., Mani, M., Merlet, S., Paquette, M., Ramirez-Manzanares, A., et al.: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion mri. IEEE Trans. Med. Imaging 33(2), 384–399 (2013)

    Google Scholar 

  7. Dell’Acqua, F., Scifo, P., Rizzo, G., Catani, M., Simmons, A., Scotti, G., Fazio, F.: A modified damped richardson-lucy algorithm to reduce isotropic background effects in spherical deconvolution. Neuroimage 49(2), 1446–1458 (2010)

    Article  Google Scholar 

  8. Dell’Acqua, F., Tournier, J.D.: Modelling white matter with spherical deconvolution: How and why? In: NMR in Biomedicine, p. e3945 (2018)

    Google Scholar 

  9. Dhollander, T., Connelly, A.: A novel iterative approach to reap the benefits of multi-tissue csd from just single-shell (+ b = 0) diffusion MRI data. In: Proceedings of ISMRM. vol. 24, p. 3010 (2016)

    Google Scholar 

  10. Dhollander, T., Raffelt, D., Smith, R.E., Connelly, A.: Panchromatic sharpening of fod-based dec maps by structural t1 information. In: Proceedings of the 23th Annual Meeting of the International Society of Magnetic Resonance in Medicine, p. 566 (2015)

    Google Scholar 

  11. Essayed, W.I., Zhang, F., Unadkat, P., Cosgrove, G.R., Golby, A.J., O’Donnell, L.J.: White matter tractography for neurosurgical planning: a topography-based review of the current state of the art. NeuroImage: Clin. 15, 659–672 (2017)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  13. Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion mri data. NeuroImage 103, 411–426 (2014)

    Article  Google Scholar 

  14. Kaden, E., Kruggel, F., Alexander, D.C.: Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magn. Reson. Med. 75(4), 1752–1763 (2016)

    Article  Google Scholar 

  15. Koppers, S., Haarburger, C., Merhof, D.: Diffusion mri signal augmentation: from single shell to multi shell with deep learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 61–70. Springer, Berlin (2016)

    Google Scholar 

  16. Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M.J., Vercauteren, T.: On the compactness, efficiency, and representation of 3d convolutional networks: brain parcellation as a pretext task. In: International Conference on Information Processing in Medical Imaging, pp. 348–360. Springer, Berlin (2017)

    Google Scholar 

  17. Mancini, M., Vos, S.B., Vakharia, V.N., O’Keeffe, A.G., Trimmel, K., Barkhof, F., Dorfer, C., Soman, S., Winston, G.P., Wu, C., et al.: Automated fiber tract reconstruction for surgery planning: extensive validation in language-related white matter tracts. NeuroImage: Clin. 101883 (2019)

    Google Scholar 

  18. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  19. Neher, P.F., Cote, M.A., Houde, J.C., Descoteaux, M., Maier-Hein, K.H.: Fiber tractography using machine learning. Neuroimage 158, 417–429 (2017)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241. Springer, Berlin (2015)

    Google Scholar 

  21. Tong, Q., He, H., Gong, T., Li, C., Liang, P., Qian, T., Sun, Y., Ding, Q., Li, K., Zhong, J.: Reproducibility of multi-shell diffusion tractography on traveling subjects: a multicenter study prospective. Magn. Reson. Imaging (2019)

    Google Scholar 

  22. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted mri data using spherical deconvolution. NeuroImage 23(3), 1176–1185 (2004)

    Article  Google Scholar 

  23. Tournier, J.D., Smith, R.E., Raffelt, D.A., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., Yeh, C.H., Connelly, A.: Mrtrix3: a fast, flexible and open software framework for medical image processing and visualisation. BioRxiv 551739 (2019)

    Google Scholar 

  24. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: Noddi: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded/supported by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy’s and St. Thomas’ NHS Foundation Trust and King’s College London and/or the NIHR Clinical Research Facility. Oeslle Lucena is funded by EPSRC Research Council (EPSRC DTP EP/R513064/1). Sjoerd B. Vos is funded by the National Institute for Health Research University College London Hospitals Biomedical Research Centre (NIHR BRC UCLH/UCL High Impact Initiative BW.mn.BRC10269). We also thank NVIDIA for the Titan V GPU used in this work. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oeslle Lucena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lucena, O., Vos, S.B., Vakharia, V., Duncan, J., Ourselin, S., Sparks, R. (2020). Convolutional Neural Networks for Fiber Orientation Distribution Enhancement to Improve Single-Shell Diffusion MRI Tractography. In: Bonet-Carne, E., Hutter, J., Palombo, M., Pizzolato, M., Sepehrband, F., Zhang, F. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-52893-5_9

Download citation

Publish with us

Policies and ethics