Skip to main content

Introduction to Veterinary Vaccines

  • Chapter
  • First Online:
Viral Vectors in Veterinary Vaccine Development

Abstract

Vaccination of animals has been carried out for centuries, and it is the most cost-effective and sustainable method of controlling infectious diseases. Veterinary vaccines not only are important to animal health but also play a vital role in reducing transmission of zoonotic diseases to humans and in securing food supply for humans. Conventional inactivated (killed) or live-attenuated vaccines constitute the majority of licensed veterinary vaccines that are currently in use. The widespread use of these vaccines not only substantially contributed to animal welfare and public health but also led to a successful global eradication of rinderpest, one of the animal diseases with major economic consequences in many parts of the world. Despite these successes, there are some limitations associated with conventional vaccines, and there are still several diseases that have yet to be successfully treated, demonstrating the need for better and safer vaccines. Recombinant vaccines represent an attractive strategy by which some of the limitations of conventional vaccines can be overcome. In the recent past, the veterinary field has witnessed the most successful applications of recombinant vaccines where more than a dozen viral-vectored vaccines, subunit, DNA, and virus-like particles-based vaccines were licensed for veterinary use, and many more are under development. There is a wave of rationally designed vaccine innovations ahead of us to benefit animals, animal owners, and ultimately humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meeusen ENT, Walker J, Peters A, Pastoret PP, Jungersen G. Current status of veterinary vaccines. Clin Microbiol Rev. 2007;20:489–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jorge S, Dellagostin OA. The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnol Res Innov. 2017;1:6–13.

    Article  Google Scholar 

  3. Jivani HM, Mathapati BS, Javia BB, Padodara RJ, Nimavat VR, Barad DB, et al. Veterinary vaccines: past, present and future. Int J Sci Environ Technol. 2016;5:3473–85.

    Google Scholar 

  4. Willis NJ. Edward Jenner and the eradication of smallpox. Scott Med J. 1997;42:118–21.

    Article  CAS  PubMed  Google Scholar 

  5. Winkelstein W Jr. Not just a country doctor: Edward Jenner, scientist. Epidemiol Rev. 1992;14:1–15.

    Article  PubMed  Google Scholar 

  6. Pasteur L. Sur les maladies virulentes, et en particulier sur la maladie appelee vulgairement cholera des poules. C R Acad Sci. 1880;90:249–8.

    Google Scholar 

  7. Pasteur L. Methode pour prevenir la rage apres morsure. C R Acad Sci. 1885;101:765–74.

    Google Scholar 

  8. Weller TH, Enders JF, Robbins FC, Stoddard MB. Studies on the cultivation of poliomyelitis viruses in tissue culture. I. the propagation of poliomyelitis viruses in suspended cell cultures of various human tissues. J Immunol. 1952;69:645–71.

    Article  CAS  PubMed  Google Scholar 

  9. Syverton JT, Scherer WF. Studies on the propagation in vitro of poliomyelitis viruses. I. Viral multiplications in tissue cultures employing monkey and human testicular cells. J Exp Med. 1952;96:355–67.

    Article  PubMed Central  Google Scholar 

  10. World Health Organization. Rabies: Key facts. 2018. https://www.who.int/newsroom/fact-sheets/detail/rabies

  11. Maki J, Guiot AL, Aubert M, Brochier B, Cliquet F, Hanlon CA, King R, Oertli EH, Rupprecht CE, Schumacher C, Slate D, Yakobson B, Wohlers A, Lankau EW. Oral vaccination of wildlife using a vaccinia–rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): a global review. Vet Res. 2017;48:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Delany I, Rappuoli DR, Gregorio ED. Vaccines for the 21st century. EMBO Mol Med. 2014;6:708–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bergman JG, Muniz M, Sutton D, Fensome R, Ling F, Paul G. Comparative trial of the canine parvovirus, canine distemper virus and canine adenovirus type 2 fractions of two commercially available modified live vaccines. Vet Rec. 2006;159:733–6.

    Article  CAS  PubMed  Google Scholar 

  14. Organisation mondiale de la santé (Office international des épizooties [OIE]. No more deaths from rinderpest. OIE’s recognition pathway paved way for global declaration of eradication by FAO member countries in June. 25 May 2011. http://www.oie.int/forthe-media/press-releases/detail/article/no-more-deaths-from-rinderpest/

  15. Roeder P. Rinderpest eradication—is it feasible? In: Olsen I, Gjøen T, editors. Proceedings of the international veterinary vaccine and diagnostics conference. Oslo: Reprosentralen, University; 2006. p. 61–2.

    Google Scholar 

  16. Plowright W. The production and use of rinderpest cell culture vaccine in developing countries. World Anim Rev. 1972;1:14–8.

    Google Scholar 

  17. van Oirschot JT. Vaccinology: present and future of veterinary viral vaccinology: a review. Vet Q. 2001;23:100–8.

    Article  PubMed  Google Scholar 

  18. Doerflinger M, Forsyth W, Ebert G, Pellegrini M, Herold MJ. CRISPR/Cas9-the ultimate weapon to battle infectious diseases? Cell Microbiol. 2017;19:2. https://doi.org/10.1111/cmi.12693.

    Article  CAS  Google Scholar 

  19. Loureiro A, da Silva GJ. CRISPR-Cas: converting a bacterial defence mechanism into a state-of-the-art genetic manipulation tool. Antibiotics (Basel). 2019;8(1):E18. https://doi.org/10.3390/antibiotics8010018.

    Article  CAS  Google Scholar 

  20. van Oirschot JT, Rziha HJ, Moonen PJ, Pol JM, van Zaane D. Differentiation of serum antibodies from pigs vaccinated or infected with Aujeszky’s disease virus by a competitive enzyme immunoassay. J Gen Virol. 1986;67:1179–82.

    Article  PubMed  Google Scholar 

  21. Wikle RE, Fretwell B, Jarecki M, Jarecki-Black JC. Canine lyme disease: one-year duration of immunity elicited with a Canine OspA Monovalent lyme vaccine. Int J Appl Res Vet Med. 2006;4:23–8.

    Google Scholar 

  22. Eschner AK, Mugnai K. Immunization with a recombinant subunit OspA vaccine markedly impacts the rate of newly acquired Borrelia burgdorferi infections in clientowned dogs living in a coastal community in Maine, USA. Parasit Vectors. 2015;8:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brun A, Bárcena J, Blanco E, Borrego B, Dory D, Escribano JM, Le Gall-Reculé G, Ortego J, Dixon LK. Current strategies for subunit and genetic viral veterinary vaccine development. Virus Res. 2011;157:1–12.

    Article  CAS  PubMed  Google Scholar 

  24. Capua I, Terregino C, Cattoli G, Mutinelli F, Rodriguez JF. Development of a DIVA (Differentiating Infected from Vaccinated Animals) strategy using a vaccine containing a heterologous neuraminidase for the control of avian influenza. Avian Pathol. 2003;32:47–55.

    Article  CAS  PubMed  Google Scholar 

  25. Buonaguro L, Tornesello ML, Buonaguro FM. Virus-like particles as particulate vaccines. Curr HIV Res. 2010;8:299–309.

    Article  CAS  PubMed  Google Scholar 

  26. Jennings GT, Bachmann MF. The coming of age of virus-like particle vaccines. Biol Chem. 2008;389:521–36.

    Article  CAS  PubMed  Google Scholar 

  27. Ramqvist T, Andreasson K, Dalianis T. Vaccination, immune and gene therapy based on virus-like particles against viral infections and cancer. Expert Opin Biol Ther. 2007;7:9971007.. Review

    Article  Google Scholar 

  28. Roy P, Noad R. Virus-like particles as a vaccine delivery system: myths and facts. Adv Exp Med Biol. 2009;655:145–58.. Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Spohn G, Bachmann MF. Exploiting viral properties for the rational design of modern vaccines. Expert Rev Vaccines. 2008;7:43–54.. Review

    Article  CAS  PubMed  Google Scholar 

  30. Mena JA, Kamen AA. Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines. 2011;10:1063–81.. Review

    Article  CAS  PubMed  Google Scholar 

  31. Fachinger V, Bischoff R, Jedidia SB, Saalmüller A, Elbers K. The effect of vaccination against porcine circovirus type 2 in pigs suffering from porcine respiratory disease complex. Vaccine. 2008;26:1488–99.

    Article  CAS  PubMed  Google Scholar 

  32. Segalés J, Domingo M. Postweaning multisystemic wasting syndrome (PMWS) in pigs. A review. Vet Q. 2002;24:109–24.

    Article  PubMed  Google Scholar 

  33. Roldão A, Vicente T, Peixoto C, Carrondo MJ, Alves PM. Quality control and analytical methods for baculovirus-based products. J Invertebr Pathol. 2011;107(Suppl):94–105.. Review

    Article  CAS  Google Scholar 

  34. Vicente T, Roldão A, Peixoto C, Carrondo MJ, Alves PM. Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol. 2011;107(Suppl):42–8.. Review

    Article  CAS  Google Scholar 

  35. Bauer S, Pigisch S, Hangel D, Kaufmann A, Hamm S. Recognition of nucleic acid and nucleic acid analogs by toll-like receptors 7, 8 and 9. Immunobiology. 2008;213:315–28.. Review

    Article  CAS  PubMed  Google Scholar 

  36. Mutwiri G, Pontarollo R, Babiuk S, Griebel P, van Drunen Littel-van den Hurk S, Mena A, Tsang C, Alcon V, Nichani A, Ioannou X, Gomis S, Townsend H, Hecker R, Potter A, Babiuk LA. Biological activity of immunostimulatory CpG DNA motifs in domestic animals. Vet Immunol Immunopathol. 2003;91:89–103.. Review

    Article  CAS  PubMed  Google Scholar 

  37. Bergman PJ, Camps-Palau MA, McKnight JA, Leibman NF, Craft DM, Leung C, et al. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the animal medical center. Vaccine. 2006;24:4582–5.

    Article  CAS  PubMed  Google Scholar 

  38. Jackson DA, Symons RH, Berg P. Biochemical method for inserting new genetic information into DNA of simian virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci U S A. 1972;69:2904–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mackett M, Smith GL, Moss B. Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci U S A. 1982;79:7415–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Panicali D, Paoletti E. Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc Natl Acad Sci U S A. 1982;79:4927–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McFadden G. Poxvirus tropism. Nat Rev Microbiol. 2005;3:201–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kieny MP, Lathe R, Drillien R, Spehner D, Skory S, Schmitt D, Wiktor T, Koprowski H, Lecocq JP. Expression of rabies virus glycoprotein from a recombinant vaccinia virus. Nature. 1984;312:163–6.

    Article  CAS  PubMed  Google Scholar 

  43. Blancou J, Kieny MP, Lathe R, Lecocq JP, Pastoret PP, Soulebot JP, Desmettre P. Oral vaccination of the fox against rabies using a live recombinant vaccinia virus. Nature. 1986;322:373–5.

    Article  CAS  PubMed  Google Scholar 

  44. Pastoret PP, Brochier B, Languet B, Thomas I, Paquot A, Bauduin B, Kieny MP, Lecocq JP, De Bruyn J, Costy F, et al. First field trial of fox vaccination against rabies using a vaccinia–rabies recombinant virus. Vet Rec. 1988;123:481–3.

    Article  CAS  PubMed  Google Scholar 

  45. Wandeler AI, Capt S, Kappeler A, Hauser R. Oral immunization of wildlife against rabies: concept and first field experiments. Rev Infect Dis. 1988;10(Suppl 4):649–53.

    Article  Google Scholar 

  46. Rupprecht CE, Charlton KM, Artois M, Casey GA, Webster WA, Campbell JB, Lawson KF, Schneider LG. Ineffectiveness and comparative pathogenicity of attenuated rabies virus vaccines for the striped skunk (Mephitis mephitis). J Wildl Dis. 1990;26:99–102.

    Article  CAS  PubMed  Google Scholar 

  47. Bublot M, Pritchard N, Swayne DE, Selleck P, Karaca K, Suarez DL, Audonnet JC, Mickle TR. Development and use of fowlpox vectored vaccines for avian influenza. Ann N Y Acad Sci. 2006;1081:193–201.

    Article  PubMed  Google Scholar 

  48. Zhang GZ, Zhang R, Zhao HL, Wang XT, Zhang SP, Li XJ, Qin CZ, Lv CM, Zhao JX, Zhou JF. A safety assessment of a fowlpox-vectored Mycoplasma gallisepticum vaccine in chickens. Poult Sci. 2010;89:1301–6.

    Article  CAS  PubMed  Google Scholar 

  49. Taylor J, Meignier B, Tartaglia J, Languet B, VanderHoeven J, Franchini G, Trimarchi C, Paoletti E. Biological and immunogenic properties of a canarypox-rabies recombinant, ALVAC-RG (vCP65) in non-avian species. Vaccine. 1995;13:539–49.

    Article  CAS  PubMed  Google Scholar 

  50. Stephensen CB, Welter J, Thaker SR, Taylor J, Tartaglia J, Paoletti E. Canine distemper virus (CDV) infection of ferrets as a model for testing morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection. J Virol. 1997;71:1506–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tartaglia J, Jarrett O, Neil JC, Desmettre P, Paoletti E. Protection of cats against feline leukemia virus by vaccination with a canarypox virus recombinant, ALVAC-FL. J Virol. 1993;67:2370–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schlecht-Louf G, Mangeney M, El-Garch H, Lacombe V, Poulet H, Heidmann T. A targeted mutation within the feline leukemia virus (FeLV) envelope protein immunosuppressive domain to improve a canarypox virus-vectored FeLV vaccine. J Virol. 2014;88:992–1001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Minke JM, Siger L, Cupillard L, Powers B, Bakonyi T, Boyum S, Nowotny N, Bowen R. Protection provided by a recombinant ALVAC(®)-WNV vaccine expressing the prM/E genes of a lineage 1 strain of WNV against a virulent challenge with a lineage 2 strain. Vaccine. 2011;29:4608–12.

    Article  CAS  PubMed  Google Scholar 

  54. Edlund Toulemonde C, Daly J, Sindle T, Guigal PM, Audonnet JC, Minke JM. Efficacy of a recombinant equine influenza vaccine against challenge with an American lineage H3N8 influenza virus responsible for the 2003 outbreak in the United Kingdom. Vet Rec. 2005;156:367–71.

    Article  CAS  PubMed  Google Scholar 

  55. Minke JM, Audonnet JC, Fischer L. Equine viral vaccines: the past, present and future. Vet Res. 2004;35:425–43.

    Article  CAS  PubMed  Google Scholar 

  56. Swayne DE. Diseases of poultry. 13th ed. Ames: Wiley; 2013.

    Book  Google Scholar 

  57. Okazaki W, Purchase HG, Burmester BR. Protection against Marek’s disease by vaccination with a herpesvirus of turkeys. Avian Dis. 1970;14:413–29.

    Article  CAS  PubMed  Google Scholar 

  58. Morgan RW, Gelb J Jr, Schreurs CS, Lutticken D, Rosenberger JK, Sondermeijer PJ. Protection of chickens from Newcastle and Marek’s diseases with a recombinant herpesvirus of turkeys vaccine expressing the Newcastle disease virus fusion protein. Avian Dis. 1992;36:858–70.

    Article  CAS  PubMed  Google Scholar 

  59. Afonso CL, Tulman ER, Lu Z, Zsak L, Rock DL, Kutish GF. The genome of Turkey herpesvirus. J Virol. 2001;75:971–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Baron MD, Iqbal M, Nair V. Recent advances in viral vectors in veterinary vaccinology. Curr Opin Virol. 2018;29:1–7.

    Article  PubMed  Google Scholar 

  61. Halsey NA. Safety of combination vaccines: perception versus reality. Pediatr Infect Dis J. 2001;20(Suppl):S40–4.

    Article  CAS  PubMed  Google Scholar 

  62. Sanyal G, Shi L. A review of multiple approaches towards an improved hepatitis B vaccine. Expert Opin Ther Pat. 2009;19:59–72.

    Article  CAS  PubMed  Google Scholar 

  63. Richard-Mazet A, Goutebroze S, Le Gros FX, Swayne DE, Bublot M. Immunogenicity and efficacy of fowlpox-vectored and inactivated avian influenza vaccines alone or in a prime-boost schedule in chickens with maternal antibodies. Vet Res. 2014;45:107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Dellagostin OA, Grassmann AA, Hartwig DD, Félix SR, da Silva ÉF, McBride AJ. Recombinant vaccines against leptospirosis. Hum Vaccin. 2011;7:1215–24.

    Article  CAS  PubMed  Google Scholar 

  65. Rappuoli R, Pizza M, Del Giudice G, De Gregorio E. Vaccines, new opportunities for a new society. Proc Natl Acad Sci U S A. 2014;111:12288–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seib KL, Zhao X, Rappuoli R. Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clin Microbiol Infect. 2012;18(Suppl 5):109–16.. Review

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teshome Mebatsion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mebatsion, T. (2021). Introduction to Veterinary Vaccines. In: Vanniasinkam, T., Tikoo, S.K., Samal, S.K. (eds) Viral Vectors in Veterinary Vaccine Development. Springer, Cham. https://doi.org/10.1007/978-3-030-51927-8_1

Download citation

Publish with us

Policies and ethics