Skip to main content

Effectiveness of Arbuscular Mycorrhizas in Improving Carob Culture in the Mediterranean Regions

  • Chapter
  • First Online:
Symbiotic Soil Microorganisms

Part of the book series: Soil Biology ((SOILBIOL,volume 60))

Abstract

Carob (Ceratonia siliqua L.) tree is considered among the most important forest-fruit species native to the Mediterranean region. It has various uses and great valorization potential, all parts of this plant could be exploited as a source of income, as human food or livestock fodder as well as source of raw materials for pharmaceutical, cosmetic, or food industries. Moreover, due to its particular agroecological features, carob tree offers the advantage of growing in poor and unfertile soils in the Mediterranean and Mediterranean-like regions of the world. Thus, carob trees are suitable for the rehabilitation of marginal and sub-marginal areas, helping to compensate for the expanding land desertification in these regions where it can play the role of pioneer and productive species. Carob has been intermittently explored over the last 20 years as a potential tree crop industry in low rainfall areas. The importance of developing the industrial agroforestry potential of the carob tree is hurdled by the lack of options for agroforestry, especially in Mediterranean regions with low rainfall (below 500 mm), and by the need to develop suitable practices for the sustainable management of natural resources. Viable commercial carob cultivation will require mastering efficient farming practices with detailed attention to water requirements and soil fertility. It would improve agricultural productivity in low rainfall areas, help manage water and land degradation, diversify farmers’ incomes, and contribute to the development of export industries contributing to balance the economy of the country. This chapter will provide current knowledge regarding the use of mycorrhizal symbiosis for the improvement of carob culture and productivity in the context of Mediterranean ecosystems. An overview on the multipurpose potential of the carob tree and how spreading its cultivation will benefit people and the environment in marginal areas is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguinaz H, Qaddoury A, Anjarne M (2017) Shoot formation efficiency of mature carob trees (Ceratonia siliqua L.) based on plant growth regulators pre-culture. Res J Biotechnol 12(8):56–62

    Google Scholar 

  • Ait Chitt M, Belmir H, Lazrak A (2007) Production de plants sélectionnés et greffés de caroubier. Bulletin mensuel d’information et de liaison du PNTTA MAPM/DERD 153:1–4

    Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59(8):2029–2041

    Article  CAS  Google Scholar 

  • Bagayoko M, George E, Römheld V, Buerkert A (2000) Effects of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a West African soil. J Agric Sci 135:399–407

    Article  Google Scholar 

  • Bakry M, Lamhamedi MS, Caron J (2013) Changes in the physical properties of two Acacia compost-based growing media and their effects on carob (Ceratonia siliqua L.) seedling development. New For 44:827–847

    Article  Google Scholar 

  • Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro-Fernández C, Lopéz-García A (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301

    Article  Google Scholar 

  • Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347–359

    Article  CAS  Google Scholar 

  • Baslam M, Qaddoury A, Goicoechea N (2014) Role of native and exotic mycorrhizal symbiosis to develop morphological, physiological and biochemical responses coping with water drought of date palm, Phoenix dactylifera L. Trees 28:161–172

    Article  CAS  Google Scholar 

  • Batlle I, Tous J (1997) Carob tree Ceratonia siliqua L. International Plant Genetic Resources Institute, Rome, Italy, pp 92

    Google Scholar 

  • Beltrano J, Ruscitti M, Arango MC, Ronco M (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J Soil Sci Plant Nutr 13:123–141

    Google Scholar 

  • Benhiba L, Fouad MO, Essahibi A, Ghoulam C, Qaddoury A (2015) Arbuscular mycorrhizal symbiosis enhanced growth and antioxidant metabolism in date palm subjected to long-term drought. Trees 29(6):1725–1733

    Article  CAS  Google Scholar 

  • Binet MN, Lemoine MC, Martin C, Chambon C, Gianinazzi S (2007) Micropropagation of Olive (Olea europaea L.) and application of mycorrhiza to improve plantlet establishment. In Vitro Cell Dev Biol Plant 43(5):473–478

    Article  CAS  Google Scholar 

  • Bouhadi D, Hariri A, Ould Yerou K, Benattouche Z, Sahnouni F, Hadjari M (2017) Kinetics of batch production of lactic acid from carob pods syrup. Bull Pharm Res 7(1):140

    Google Scholar 

  • Boutasknit A, Baslam M, Ait-El-Mokhtar M, Anli M, Ben-Laouane R, Douira A, El Modafar C, Mitsui T, Wahbi S, Meddich A (2020) Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting Carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and (in) organic adjustments. Plan Theory 9(1):80

    CAS  Google Scholar 

  • Cardoso IM, Boddington CL, Janssen BH, Oenema O, Kuyper TW (2006) Differential access to phosphorus pools of an oxisol by mycorrhizal and non mycorrhizal maize. Commun Soil Sci Plant Anal 37:1537–1551

    Article  CAS  Google Scholar 

  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. Front Plant Sci 9:1270

    Article  Google Scholar 

  • Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E (2016) Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol 171(2):1009–1023

    Google Scholar 

  • Correia MJ, Coelho D, David MM (2001) Response to seasonal drought in three cultivars of Ceratonia siliqua: leaf growth and water relations. Tree Physiol 21:645–653

    Article  CAS  Google Scholar 

  • Correia PJ, Gama F, Pestana M, Martins-Loução MA (2010) Tolerance of young (Ceratonia siliqua L.) carob rootstock to NaCl. Agr Water Manage 97:910–916

    Article  Google Scholar 

  • Craig WJ, Nguyen TT (1984) Caffeine and theobromine level in cocoa and carob products. J Food Sci 49:302–305

    Article  CAS  Google Scholar 

  • Curtis A, Race D (1998) Carob agroforestry in the low rainfall Murray valley: a market and economic assessment. Publication No. 98/8. Rural Industry Research and Development Corporation (RIRDC), ISBN 0642540306. Australia

    Google Scholar 

  • Custodio L, Escapa AL, Fernandes E, Fajardo A, Aligué R (2011a) Phytochemical profile, antioxidant and cytotoxic activities of the carob tree (Ceratonia siliqua L.) germ flour extracts. Plant Food Hum Nutr 66:78–84

    Article  CAS  Google Scholar 

  • Custodio L, Fernandes E, Escapa AL, Fajardo A, Aligue R (2011b) Antioxidant and cytotoxic activities of carob tree fruit pulps are strongly influenced by gender and cultivar. J Agric Food Chem 59:7005–7012

    Article  CAS  Google Scholar 

  • Davies FT (2008) Opportunities from down under: How mycorrhizal fungi can benefit nursery propagation and production systems. In: The International Plant Propagators Society Combined Proceedings (Seattle WA, ed.). International Plant Propagators Society, Combined Proceedings 58:538–548.

    Google Scholar 

  • De Candolle A (1883) L’origine des plantes cultivées. Balière, Paris, France

    Google Scholar 

  • Duponnois R, Colombet A, Hien V, Thioulouse J (2005) The mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea. Soil Biol Biochem 37:1460–1468

    Article  CAS  Google Scholar 

  • El Asri A, Talbi Z, Ait Aguil F, Chliyeh M, Sghir F, Touati J, Ouazzani Touhami A, Benkirane R, Douira A (2014) Arbuscular mycorrhizal fungi associated with rhizosphere of carob tree (Ceratonia siliqua L.) in Morocco. Int J Pure App Biosci 2:286–297

    Google Scholar 

  • El Kahkahi M, Mouhajir S, Bachir A, Lemrhari R, Zouhair M, Ait Chitt M, Errakhi R (2015) Morphological and physiological analysis of salinity stress response of carob (Ceratonia siliqua L.) in Morocco. Sci Int 3:73–81

    Article  CAS  Google Scholar 

  • El Kahkahi R, Moustaine M, Mouhajir A, Bachir S, Lemrhari A, Zouhair R, Errakhi R (2016) Technical sheet on the culture carob tree (Ceratonia Siliqua L.) in Morocco

    Google Scholar 

  • El-Soda AS, Elhusseiny AM, Hammad AA, El-Arabi NI (2016) Using different methods to produce vegetative carob seedlings. Egypt J Hort 43(2):241–257

    Article  Google Scholar 

  • Esbenshade H (1994) Olives and carobs for landcare and profit in South Australia. In: Proceedings of national symposium on olive

    Google Scholar 

  • Esbenshade HW, Wilson G (1986) Growing Carobs in Australia. Goddard and Dobson Publishers, Box Hill, VIC

    Google Scholar 

  • Eshghi S, Rostami AA, Jamali B (2018) Carob tree: a suitable species for the future. Acta Hortic 1190:67–70

    Article  Google Scholar 

  • Essahibi A (2018) Amélioration des performances des boutures du caroubier en termes d’enracinement, d’acclimatation, et de tolérance aux contraintes du milieu en post-acclimatation: importance des champignons mycorhiziens à arbuscules. Doctorate dissertation, FST-Marrakech, Morocco

    Google Scholar 

  • Essahibi A, Benhiba L, Fouad MO, Babram M, Ghoulam C, Qaddoury A (2017) Improved rooting capacity and hardening efficiency of carob (ceratonia siliqua L.) cuttings using arbuscular mycorrhizal fungi. Arch Biol Sci 69(2):291–298

    Article  Google Scholar 

  • Essahibi A, Benhiba L, Babram M, Ghoulam C, Qaddoury A (2018) Influence of arbuscular mycorrhizal fungi on the functional mechanisms associated with drought tolerance in carob (Ceratonia siliqua L.). Trees 32:87–97

    Article  Google Scholar 

  • Essahibi A, Benhiba L, Fouad MO, Babram M, Ghoulam C, Qaddoury A (2019) Responsiveness of carob (Ceratonia siliqua L.) plants to arbuscular mycorrhizal symbiosis under different phosphate fertilization levels. J Plant Growth Regul 38:1243–1254

    Article  CAS  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    Article  CAS  Google Scholar 

  • Fouad MO (2015) Déterminant de la capacité des boutures d’olivier à surmonter les opérations d’acclimatation et de transplantation: importance des champignons mycorhiziens à arbuscules. Thèse Doctorat, FST-Marrakech, 157 p

    Google Scholar 

  • Fouad MO, Essahibi A, Benhiba A, Qaddoury A (2014) Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Span J Agric Res 12(3):763–771

    Article  Google Scholar 

  • Gadkar V, David-Schwartz R, Kunik T, Kapulnik Y (2001) Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol 127:1493–1499

    Article  CAS  Google Scholar 

  • Gharnit N, El Mtili N, Ennabili A, Sayah F (2006) Importance socio-éconmique du caroubier (Ceratonia siliqua L.) dans la province de Chefchaouen (Nord-Ouest du Maroc). J Bot Soc Bot France 33:43–48

    Google Scholar 

  • Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei-Joghan A (2013) Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric Water Manag 117:106–114

    Article  Google Scholar 

  • Goussous SJ, Mohammad MJ (2009) Comparative effect of two arbuscular mycorrhizae and N and P fertilizers on growth and nutrient uptake of onions. Int J Agric Biol 11:463–467

    CAS  Google Scholar 

  • Hamdy A, and Lacirignola C (1999) Mediterranean water resources: major challenges towards the 21st century. Proceedings of the international seminar on Mediterranean water resources: major challenges towards the 21st century, March, Cairo, Egypt, pp 562–562

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, New York, p 483

    Google Scholar 

  • Hartmann HT, Kester DE, Davies FT, Geneve RL (1997) Plant propagation: principles and practices, 6th edn. Prentice-Hall, New Jersey, p 770

    Google Scholar 

  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL (2005) Soil fertility and fertilizers: an introduction to nutrient management. Pearson Prentice Hall, Upper Saddle River, pp 97–141

    Google Scholar 

  • Hillcoat D, Lewis G, Verdcourt B (1980) A new species of Ceratonia (Leguminosea- Caesalpinoideae) from Arabia and the Somali Republic. Kew Bull 35:261–271

    Article  Google Scholar 

  • Hogan M (1995) Carob. Unpublished notes, Uncle Bens of Australia, Wodonga, VIC

    Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci 104:1720–1725

    Article  CAS  Google Scholar 

  • Khatib S, Vaya J (2010) Fig, Carob, Pistachio, and health in bioactive foods in promoting health. In: Watson RR (ed) Fruits and vegetables. Elsevier, Amsterdam, pp 245–263

    Google Scholar 

  • Kikuta SB, Gullo MA, Nardini A, Richter H, Salleo S (1997) Ultrasound acoustic emissions from dehydrating leaves of deciduous and evergreen trees. Plant Cell Environ 20:1381–1390

    Article  Google Scholar 

  • Konate I (2007) Diversité phénotypique et moléculaire du Caroubier (Ceratonia siliqua L.) et des bactéries endophytes qui lui sont associées. Dissertation, University of Mohammed V

    Google Scholar 

  • Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339

    Article  CAS  Google Scholar 

  • Makris DP, Kefalas P (2004) Carob pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technol Biotechnol 42:105–108

    CAS  Google Scholar 

  • Manaut N, Sanguin H, Ouahmane L, Bressan M, Thioulouse J, Baudoin E, Galiana A, Hafidi M, Prin Y, Duponnois R (2015) Potentialities of ecological engineering strategy based on native arbuscular mycorrhizal community for improving afforestation programs with carob trees in degraded environments. Ecol Eng 79:113–119

    Article  Google Scholar 

  • Martins-Louçao MA, Rodriguez-Barrueco C (1981) Establishment of proliferation callus from roots, cotyledons and hypocotyls of carob seedlings. Z Pflanzenphysiol 103:297–303

    Article  Google Scholar 

  • Mohammad MJ, Hamad SR, Malkawi HI (2003) Population of arbuscular mycorrhizal fungi in semiarid environment of Jordan as influenced by biotic and abiotic factors. J Arid Environ 53:409–417

    Article  Google Scholar 

  • Morton JF (1987) Carob. In: Morton JF (ed) Fruits of warm climates. Julia F. Morton, Miami, FL, pp 65–69

    Google Scholar 

  • Morton JB (1990) Species and clones of arbuscular mycorrhizal fungi (Glomales, Zygomycetes): their role in macro- and microevolutionary processes. Mycotaxon 37:493–515

    Google Scholar 

  • Nagy R, Karandashov V, Chague V (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250

    Article  CAS  Google Scholar 

  • Nunes MA, Linskens HF (1980) Some aspects of the structure and regulation of Ceratonia siliqua L. stomata. Portug Acta Biol 16:165–174

    Google Scholar 

  • Nunes MA, Catarino FM, Pinto E (1989) Strategies for acclimation to seasonal drought in Ceratonia siliqua leaves. Physiol Plant 77(1):150–156

    Article  Google Scholar 

  • Ouahmane L, Ndoye I, Morino A, Ferradous A, Sfairi Y, Al Faddy MN, Abourouh M (2012) Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal fungi mixture improves seedling establishment under greenhouse conditions. Afr J Biotechnol 11:16422–16426

    Google Scholar 

  • Ozturk M, Dogan Y, Sakcali MS, Doulis A, Karam F (2010) Ecophysiological responses of some maquis (Ceratonia siliqua L., Olea oleaster Hoffm. & Link, Pistacia lentiscus and Quercus coccifera L.) plant species to drought in the East Mediterranean ecosystem. J Environ Biol 31:233–245

    Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  CAS  Google Scholar 

  • Porcel R, Aroca R, Azcon R (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60(3):389–404

    Article  CAS  Google Scholar 

  • Radi A, Echchgadda G, Ibijbijen I, Rochd M (2013) In vitro propagation of Moroccan carob (Ceratonia siliqua L.). J Food Agri Environ 11(1):1103–1107

    Google Scholar 

  • Rejeb MN, Laffray D, Louguet P (1991) Physiologie du caroubier (Ceratonia siliqua L.) en Tunisie. Physiologie des arbres et arbustes en zones arides et semi-arides. Group d’Etude de l’Arbre, Paris, France, pp 417–426

    Google Scholar 

  • Remy W, Taylor TM, Hass H et al (1994) Proc Natl Acad Sci USA 91:11841–11843

    Article  CAS  Google Scholar 

  • Rhizopoulou S, Davies WJ (1991) Influence of soil drying on root development, water relations and leaf growth of Ceratonia siliqua L. Oecologia 88:41–47

    Article  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Romano A, Barros S, Martins-Loucao MA (2002) Micropropagation of the Mediterranean tree Ceratonia siliqua. Plant Cell Tissue Organ Cult 68:35–41

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–452

    Article  CAS  Google Scholar 

  • Sakcali MS, Ozturk M (2004) Eco-physiological behaviour of some Mediterranean plants as suitable candidates for reclamation of degraded areas. J Arid Environ 57:141–153

    Article  Google Scholar 

  • Salleo S, Gullo ML (1989) Different aspects of cavitation resistance in Ceratonia siliqua, a drought-avoiding Mediterranean tree. Ann Bot 64:325–336

    Article  Google Scholar 

  • Sbay H, Abourouh M (2006) Apport des espèces à usages multiples pour le développement durable: cas du pin pignon et du caroubier. Centre de Recherche Forestière, Haut-Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification, Rabat 9 p.

    Google Scholar 

  • Scagel CF (2001) Cultivar specific effects of mycorrhizal fungi on the rooting of miniature rose cuttings. J Environ Hortic 19(1):15–20

    Article  Google Scholar 

  • Scagel CF (2004) Enhanced rooting of kinnikinnick cuttings using mycorrhizal fungi in rooting substrate. Hort Technol 14(3):355–363

    Article  Google Scholar 

  • Schweinfurth G (1894) Sammlung arabischaethiopischer Pflanzen, Ergebnisse von Reisen in dem Jahren 1881, 1888-89, 1891-92. Bull Herb Boissier 2:1–114

    Google Scholar 

  • Simon L, Levesque RC, Lalonde M (1993) Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism polymerase chain reaction. Appl Environ Microbiol 59:4211–4215

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, Waltham

    Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Stutz JC, Copeman R, Martin CA, Morton JB (2000) Patterns of species composition and distribution of arbuscular mycorrhizal fungi in arid regions of southwestern North America and Namibia, Africa. Can J Bot 78:237–245

    Google Scholar 

  • Tamasloukht MB, Séjalon-Delmas N, Kluever A, Jauneau A, Roux C, Bécard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478

    Article  CAS  Google Scholar 

  • Turk MA, Assaf TA, Hameed KM, Al-Tawaha AM (2006) Significance of mycorrhizae. World J Agric Sci 2:16–20

    Google Scholar 

  • Tyagi J, Varma A, Pudake RN (2017) Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress. Eur J Soil Biol 81:1–10

    Article  CAS  Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants [translated from the Russian by K.S. Chester]. The Ronald Press, New York

    Google Scholar 

  • Vertovec M, Sakçali S, Ozturk M, Salleo S, Giacomich P, Feoli E, Nardini A (2001) Diagnosing plant water status as a tool for quantifying water stress on a regional basis in Mediterranean drylands. Ann For Sci 58:113–125

    Article  Google Scholar 

  • Walder F, Brule D, Koegel S et al (2015) Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol 205:1632–1645

    Article  CAS  Google Scholar 

  • Winer N (1980) The potential of the carob tree (Ceratonia siliqua). Int Tree Crops J 1(1):15–26

    Article  Google Scholar 

  • Wu QS (2017) Arbuscular mycorrhizas and stress tolerance of plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore

    Chapter  Google Scholar 

  • Xie X, Huang W, Liu F, Tang N, Liu Y, Lin H, Zhao B (2013) Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytol 198:836–852

    Article  CAS  Google Scholar 

  • Zohary M (1973) Geobotanical foundations of the Middle East, 2 vols. Gustav Fisher Verlag, Stuttgart

    Google Scholar 

  • Zraibi L, Nabloussi A, Merimi J, El Amrani A, Kajeiou M, Khalid A, Caid HS (2012) Effet du stress salin sur des paramétres physiologiques et agronomiques de différentes variétes de carthame (Carthamus tinctorius L.). Al Awamia 125–126:15–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Qaddoury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Essahibi, A., Benhiba, L., Ghoulam, C., Qaddoury, A. (2021). Effectiveness of Arbuscular Mycorrhizas in Improving Carob Culture in the Mediterranean Regions. In: Shrivastava, N., Mahajan, S., Varma, A. (eds) Symbiotic Soil Microorganisms. Soil Biology, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-030-51916-2_8

Download citation

Publish with us

Policies and ethics