Skip to main content

Druggable Lipid GPCRs: Past, Present, and Prospects

  • Chapter
  • First Online:
Druggable Lipid Signaling Pathways

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1274))

Abstract

G protein-coupled receptors (GPCRs) have seven transmembrane spanning domains and comprise the largest superfamily with ~800 receptors in humans. GPCRs are attractive targets for drug discovery because they transduce intracellular signaling in response to endogenous ligands via heterotrimeric G proteins or arrestins, resulting in a wide variety of physiological and pathophysiological responses. The endogenous ligands for GPCRs are highly chemically diverse and include ions, biogenic amines, nucleotides, peptides, and lipids. In this review, we follow the KonMari method to better understand druggable lipid GPCRs. First, we have a comprehensive tidying up of lipid GPCRs including receptors for prostanoids, leukotrienes, specialized pro-resolving mediators (SPMs), lysophospholipids, sphingosine 1-phosphate (S1P), cannabinoids, platelet-activating factor (PAF), free fatty acids (FFAs), and sterols. This tidying up consolidates 46 lipid GPCRs and declutters several perplexing lipid GPCRs. Then, we further tidy up the lipid GPCR-directed drugs from the literature and databases, which identified 24 clinical drugs targeting 16 unique lipid GPCRs available in the market and 44 drugs under evaluation in more than 100 clinical trials as of 2019. Finally, we introduce drug designs for GPCRs that spark joy, such as positive or negative allosteric modulators (PAM or NAM), biased agonism, functional antagonism like fingolimod, and monoclonal antibodies (MAbs). These strategic drug designs may increase the efficacy and specificity of drugs and reduce side effects. Technological advances will help to discover more endogenous lipid ligands from the vast number of remaining orphan GPCRs and will also lead to the development novel lipid GPCR drugs to treat various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander SP, Christopoulos A, Davenport AP, Kelly E, Marrion NV, Peters JA, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA, Collaborators C (2017) THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein-coupled receptors. Br J Pharmacol 174(Suppl 1):S17–S129

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Niimura Y (2009) Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents. Hum Genomics 4:107–118

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA, Collaborators C (2019) THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors. Br J Pharmacol 176(Suppl 1):S21–S141

    PubMed  PubMed Central  Google Scholar 

  4. Munk C, Isberg V, Mordalski S, Harpsoe K, Rataj K, Hauser AS, Kolb P, Bojarski AJ, Vriend G, Gloriam DE (2016) GPCRdb: the G protein-coupled receptor database – an introduction. Br J Pharmacol 173:2195–2207

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pandy-Szekeres G, Munk C, Tsonkov TM, Mordalski S, Harpsoe K, Hauser AS, Bojarski AJ, Gloriam DE (2018) GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res 46:D440–D446

    CAS  PubMed  Google Scholar 

  6. Kobilka BK (2007) G protein coupled receptor structure and activation. Biochim Biophys Acta 1768:794–807

    CAS  PubMed  Google Scholar 

  7. Weis WI, Kobilka BK (2018) The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem 87:897–919

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Miki N, Keirns JJ, Marcus FR, Freeman J, Bitensky MW (1973) Regulation of cyclic nucleotide concentrations in photoreceptors: an ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light. Proc Natl Acad Sci U S A 70:3820–3824

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Costanzi S, Siegel J, Tikhonova IG, Jacobson KA (2009) Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptors. Curr Pharm Des 15:3994–4002

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wheeler GL, Bitensky MW (1977) A light-activated GTPase in vertebrate photoreceptors: regulation of light-activated cyclic GMP phosphodiesterase. Proc Natl Acad Sci U S A 74:4238–4242

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wheeler GL, Matuto Y, Bitensky MW (1977) Light-activated GTPase in vertebrate photoreceptors. Nature 269:822–824

    CAS  PubMed  Google Scholar 

  12. Fung BK, Hurley JB, Stryer L (1981) Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sci U S A 78:152–156

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nathans J, Hogness DS (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34:807–814

    CAS  PubMed  Google Scholar 

  14. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    CAS  PubMed  Google Scholar 

  15. Lefkowitz RJ (2013) A brief history of G-protein coupled receptors (Nobel Lecture). Angew Chem Int Ed Engl 52:6366–6378

    CAS  PubMed  Google Scholar 

  16. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    CAS  PubMed  Google Scholar 

  17. Hla T, Maciag T (1990) An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J Biol Chem 265:9308–9313

    CAS  PubMed  Google Scholar 

  18. Honda Z, Nakamura M, Miki I, Minami M, Watanabe T, Seyama Y, Okado H, Toh H, Ito K, Miyamoto T et al (1991) Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature 349:342–346

    CAS  PubMed  Google Scholar 

  19. Hirata M, Hayashi Y, Ushikubi F, Yokota Y, Kageyama R, Nakanishi S, Narumiya S (1991) Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature 349:617–620

    CAS  PubMed  Google Scholar 

  20. Sugimoto Y, Namba T, Honda A, Hayashi Y, Negishi M, Ichikawa A, Narumiya S (1992) Cloning and expression of a cDNA for mouse prostaglandin E receptor EP3 subtype. J Biol Chem 267:6463–6466

    CAS  PubMed  Google Scholar 

  21. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    CAS  PubMed  Google Scholar 

  22. Honda A, Sugimoto Y, Namba T, Watabe A, Irie A, Negishi M, Narumiya S, Ichikawa A (1993) Cloning and expression of a cDNA for mouse prostaglandin E receptor EP2 subtype. J Biol Chem 268:7759–7762

    CAS  PubMed  Google Scholar 

  23. Watabe A, Sugimoto Y, Honda A, Irie A, Namba T, Negishi M, Ito S, Narumiya S, Ichikawa A (1993) Cloning and expression of cDNA for a mouse EP1 subtype of prostaglandin E receptor. J Biol Chem 268:20175–20178

    CAS  PubMed  Google Scholar 

  24. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    CAS  PubMed  Google Scholar 

  25. MacLennan AJ, Browe CS, Gaskin AA, Lado DC, Shaw G (1994) Cloning and characterization of a putative G-protein coupled receptor potentially involved in development. Mol Cell Neurosci 5:201–209

    CAS  PubMed  Google Scholar 

  26. Okazaki H, Ishizaka N, Sakurai T, Kurokawa K, Goto K, Kumada M, Takuwa Y (1993) Molecular cloning of a novel putative G protein-coupled receptor expressed in the cardiovascular system. Biochem Biophys Res Commun 190:1104–1109

    CAS  PubMed  Google Scholar 

  27. Sugimoto Y, Hasumoto K, Namba T, Irie A, Katsuyama M, Negishi M, Kakizuka A, Narumiya S, Ichikawa A (1994) Cloning and expression of a cDNA for mouse prostaglandin F receptor. J Biol Chem 269:1356–1360

    CAS  PubMed  Google Scholar 

  28. Katsuyama M, Sugimoto Y, Namba T, Irie A, Negishi M, Narumiya S, Ichikawa A (1994) Cloning and expression of a cDNA for the human prostacyclin receptor. FEBS Lett 344:74–78

    CAS  PubMed  Google Scholar 

  29. Namba T, Oida H, Sugimoto Y, Kakizuka A, Negishi M, Ichikawa A, Narumiya S (1994) cDNA cloning of a mouse prostacyclin receptor. Multiple signaling pathways and expression in thymic medulla. J Biol Chem 269:9986–9992

    CAS  PubMed  Google Scholar 

  30. Boie Y, Rushmore TH, Darmon-Goodwin A, Grygorczyk R, Slipetz DM, Metters KM, Abramovitz M (1994) Cloning and expression of a cDNA for the human prostanoid IP receptor. J Biol Chem 269:12173–12178

    CAS  PubMed  Google Scholar 

  31. Hirata M, Kakizuka A, Aizawa M, Ushikubi F, Narumiya S (1994) Molecular characterization of a mouse prostaglandin D receptor and functional expression of the cloned gene. Proc Natl Acad Sci U S A 91:11192–11196

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Boie Y, Sawyer N, Slipetz DM, Metters KM, Abramovitz M (1995) Molecular cloning and characterization of the human prostanoid DP receptor. J Biol Chem 270:18910–18916

    CAS  PubMed  Google Scholar 

  33. Fiore S, Maddox JF, Perez HD, Serhan CN (1994) Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. J Exp Med 180:253–260

    CAS  PubMed  Google Scholar 

  34. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    CAS  PubMed  Google Scholar 

  35. Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97

    CAS  PubMed  Google Scholar 

  36. Masana MI, Brown RC, Pu H, Gurney ME, Dubocovich ML (1995) Cloning and characterization of a new member of the G-protein coupled receptor EDG family. Receptors Channels 3:255–262

    CAS  PubMed  Google Scholar 

  37. Hecht JH, Weiner JA, Post SR, Chun J (1996) Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol 135:1071–1083

    CAS  PubMed  Google Scholar 

  38. Yamaguchi F, Tokuda M, Hatase O, Brenner S (1996) Molecular cloning of the novel human G protein-coupled receptor (GPCR) gene mapped on chromosome 9. Biochem Biophys Res Commun 227:608–614

    CAS  PubMed  Google Scholar 

  39. An S, Bleu T, Huang W, Hallmark OG, Coughlin SR, Goetzl EJ (1997) Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett 417:279–282

    CAS  PubMed  Google Scholar 

  40. Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T (1997) A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387:620–624

    CAS  PubMed  Google Scholar 

  41. Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R, Spiegel S, Hla T (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279:1552–1555

    CAS  PubMed  Google Scholar 

  42. An S, Bleu T, Hallmark OG, Goetzl EJ (1998) Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J Biol Chem 273:7906–7910

    CAS  PubMed  Google Scholar 

  43. Graler MH, Bernhardt G, Lipp M (1998) EDG6, a novel G-protein-coupled receptor related to receptors for bioactive lysophospholipids, is specifically expressed in lymphoid tissue. Genomics 53:164–169

    CAS  PubMed  Google Scholar 

  44. Lynch KR, O’Neill GP, Liu Q, Im DS, Sawyer N, Metters KM, Coulombe N, Abramovitz M, Figueroa DJ, Zeng Z, Connolly BM, Bai C, Austin CP, Chateauneuf A, Stocco R, Greig GM, Kargman S, Hooks SB, Hosfield E, Williams DL Jr, Ford-Hutchinson AW, Caskey CT, Evans JF (1999) Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 399:789–793

    CAS  PubMed  Google Scholar 

  45. Bandoh K, Aoki J, Hosono H, Kobayashi S, Kobayashi T, Murakami-Murofushi K, Tsujimoto M, Arai H, Inoue K (1999) Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem 274:27776–27785

    CAS  PubMed  Google Scholar 

  46. Abe H, Takeshita T, Nagata K, Arita T, Endo Y, Fujita T, Takayama H, Kubo M, Sugamura K (1999) Molecular cloning, chromosome mapping and characterization of the mouse CRTH2 gene, a putative member of the leukocyte chemoattractant receptor family. Gene 227:71–77

    CAS  PubMed  Google Scholar 

  47. Van Brocklyn JR, Graler MH, Bernhardt G, Hobson JP, Lipp M, Spiegel S (2000) Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood 95:2624–2629

    PubMed  Google Scholar 

  48. Yamazaki Y, Kon J, Sato K, Tomura H, Sato M, Yoneya T, Okazaki H, Okajima F, Ohta H (2000) Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. Biochem Biophys Res Commun 268:583–589

    CAS  PubMed  Google Scholar 

  49. Yokomizo T, Kato K, Hagiya H, Izumi T, Shimizu T (2001) Hydroxyeicosanoids bind to and activate the low affinity leukotriene B4 receptor, BLT2. J Biol Chem 276:12454–12459

    CAS  PubMed  Google Scholar 

  50. Heise CE, O’Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im DS, Stocco R, Bellefeuille JN, Abramovitz M, Cheng R, Williams DL Jr, Zeng Z, Liu Q, Ma L, Clements MK, Coulombe N, Liu Y, Austin CP, George SR, O’Neill GP, Metters KM, Lynch KR, Evans JF (2000) Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 275:30531–30536

    CAS  PubMed  Google Scholar 

  51. Im DS, Heise CE, Ancellin N, O’Dowd BF, Shei GJ, Heavens RP, Rigby MR, Hla T, Mandala S, McAllister G, George SR, Lynch KR (2000) Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. J Biol Chem 275:14281–14286

    CAS  PubMed  Google Scholar 

  52. Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, Ichimasa M, Sugamura K, Nakamura M, Takano S, Nagata K (2001) Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 193:255–261

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hosoi T, Koguchi Y, Sugikawa E, Chikada A, Ogawa K, Tsuda N, Suto N, Tsunoda S, Taniguchi T, Ohnuki T (2002) Identification of a novel human eicosanoid receptor coupled to G(i/o). J Biol Chem 277:31459–31465

    CAS  PubMed  Google Scholar 

  54. Jones CE, Holden S, Tenaillon L, Bhatia U, Seuwen K, Tranter P, Turner J, Kettle R, Bouhelal R, Charlton S, Nirmala NR, Jarai G, Finan P (2003) Expression and characterization of a 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid receptor highly expressed on human eosinophils and neutrophils. Mol Pharmacol 63:471–477

    CAS  PubMed  Google Scholar 

  55. Takeda S, Yamamoto A, Haga T (2002) Identification of a G protein-coupled receptor for 5-oxo-eicosatetraenoic acid. Biomed Res 23:101–108

    CAS  Google Scholar 

  56. Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Nakamura T, Itadani H, Tanaka K (2002) Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun 298:714–719

    CAS  PubMed  Google Scholar 

  57. Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, Hinuma S, Fujisawa Y, Fujino M (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278:9435–9440

    CAS  PubMed  Google Scholar 

  58. Noguchi K, Ishii S, Shimizu T (2003) Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem 278:25600–25606

    CAS  PubMed  Google Scholar 

  59. Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311

    CAS  PubMed  Google Scholar 

  60. Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422:173–176

    CAS  PubMed  Google Scholar 

  61. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319

    CAS  PubMed  Google Scholar 

  62. Arita M, Bianchini F, Aliberti J, Sher A, Chiang N, Hong S, Yang R, Petasis NA, Serhan CN (2005) Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J Exp Med 201:713–722

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94

    CAS  PubMed  Google Scholar 

  64. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER (2005) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307:1625–1630

    CAS  PubMed  Google Scholar 

  65. Lee CW, Rivera R, Gardell S, Dubin AE, Chun J (2006) GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem 281:23589–23597

    CAS  PubMed  Google Scholar 

  66. Sugo T, Tachimoto H, Chikatsu T, Murakami Y, Kikukawa Y, Sato S, Kikuchi K, Nagi T, Harada M, Ogi K, Ebisawa M, Mori M (2006) Identification of a lysophosphatidylserine receptor on mast cells. Biochem Biophys Res Commun 341:1078–1087

    CAS  PubMed  Google Scholar 

  67. Oka S, Nakajima K, Yamashita A, Kishimoto S, Sugiura T (2007) Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 362:928–934

    CAS  PubMed  Google Scholar 

  68. Okuno T, Iizuka Y, Okazaki H, Yokomizo T, Taguchi R, Shimizu T (2008) 12(S)-Hydroxyheptadeca-5Z, 8E, 10E-trienoic acid is a natural ligand for leukotriene B4 receptor 2. J Exp Med 205:759–766

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Pasternack SM, von Kugelgen I, Al Aboud K, Lee YA, Ruschendorf F, Voss K, Hillmer AM, Molderings GJ, Franz T, Ramirez A, Nurnberg P, Nothen MM, Betz RC (2008) G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet 40:329–334

    CAS  PubMed  Google Scholar 

  70. Shimomura Y, Wajid M, Ishii Y, Shapiro L, Petukhova L, Gordon D, Christiano AM (2008) Disruption of P2RY5, an orphan G protein-coupled receptor, underlies autosomal recessive woolly hair. Nat Genet 40:335–339

    CAS  PubMed  Google Scholar 

  71. Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH, Yang R, Petasis NA, Serhan CN (2010) Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc Natl Acad Sci U S A 107:1660–1665

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hannedouche S, Zhang J, Yi T, Shen W, Nguyen D, Pereira JP, Guerini D, Baumgarten BU, Roggo S, Wen B, Knochenmuss R, Noel S, Gessier F, Kelly LM, Vanek M, Laurent S, Preuss I, Miault C, Christen I, Karuna R, Li W, Koo DI, Suply T, Schmedt C, Peters EC, Falchetto R, Katopodis A, Spanka C, Roy MO, Detheux M, Chen YA, Schultz PG, Cho CY, Seuwen K, Cyster JG, Sailer AW (2011) Oxysterols direct immune cell migration via EBI2. Nature 475:524–527

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Guo Y, Zhang W, Giroux C, Cai Y, Ekambaram P, Dilly AK, Hsu A, Zhou S, Maddipati KR, Liu J, Joshi S, Tucker SC, Lee MJ, Honn KV (2011) Identification of the orphan G protein-coupled receptor GPR31 as a receptor for 12-(S)-hydroxyeicosatetraenoic acid. J Biol Chem 286:33832–33840

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Inoue A, Ishiguro J, Kitamura H, Arima N, Okutani M, Shuto A, Higashiyama S, Ohwada T, Arai H, Makide K, Aoki J (2012) TGFalpha shedding assay: an accurate and versatile method for detecting GPCR activation. Nat Methods 9:1021–1029

    CAS  PubMed  Google Scholar 

  75. Kanaoka Y, Maekawa A, Austen KF (2013) Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. J Biol Chem 288:10967–10972

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Guy AT, Nagatsuka Y, Ooashi N, Inoue M, Nakata A, Greimel P, Inoue A, Nabetani T, Murayama A, Ohta K, Ito Y, Aoki J, Hirabayashi Y, Kamiguchi H (2015) Neuronal development. Glycerophospholipid regulation of modality-specific sensory axon guidance in the spinal cord. Science 349:974–977

    CAS  PubMed  Google Scholar 

  77. Chiang N, Dalli J, Colas RA, Serhan CN (2015) Identification of resolvin D2 receptor mediating resolution of infections and organ protection. J Exp Med 212:1203–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    CAS  PubMed  Google Scholar 

  79. Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC, Sanna MG, Han GW, Kuhn P, Rosen H, Stevens RC (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335:851–855

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Srivastava A, Yano J, Hirozane Y, Kefala G, Gruswitz F, Snell G, Lane W, Ivetac A, Aertgeerts K, Nguyen J, Jennings A, Okada K (2014) High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature 513:124–127

    CAS  PubMed  Google Scholar 

  81. Chrencik JE, Roth CB, Terakado M, Kurata H, Omi R, Kihara Y, Warshaviak D, Nakade S, Asmar-Rovira G, Mileni M, Mizuno H, Griffith MT, Rodgers C, Han GW, Velasquez J, Chun J, Stevens RC, Hanson MA (2015) Crystal structure of antagonist bound human lysophosphatidic acid receptor 1. Cell 161:1633–1643

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hua T, Vemuri K, Pu M, Qu L, Han GW, Wu Y, Zhao S, Shui W, Li S, Korde A, Laprairie RB, Stahl EL, Ho JH, Zvonok N, Zhou H, Kufareva I, Wu B, Zhao Q, Hanson MA, Bohn LM, Makriyannis A, Stevens RC, Liu ZJ (2016) Crystal structure of the human cannabinoid receptor CB1. Cell 167(750–762):e714

    Google Scholar 

  83. Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L, Pu M, Korde A, Jiang S, Ho JH, Han GW, Ding K, Li X, Liu H, Hanson MA, Zhao S, Bohn LM, Makriyannis A, Stevens RC, Liu ZJ (2017) Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 547:468–471

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Shao Z, Yin J, Chapman K, Grzemska M, Clark L, Wang J, Rosenbaum DM (2016) High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature 540:602–606

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Taniguchi R, Inoue A, Sayama M, Uwamizu A, Yamashita K, Hirata K, Yoshida M, Tanaka Y, Kato HE, Nakada-Nakura Y, Otani Y, Nishizawa T, Doi T, Ohwada T, Ishitani R, Aoki J, Nureki O (2017) Structural insights into ligand recognition by the lysophosphatidic acid receptor LPA6. Nature 548:356–360

    CAS  PubMed  Google Scholar 

  86. Lu J, Byrne N, Wang J, Bricogne G, Brown FK, Chobanian HR, Colletti SL, Di Salvo J, Thomas-Fowlkes B, Guo Y, Hall DL, Hadix J, Hastings NB, Hermes JD, Ho T, Howard AD, Josien H, Kornienko M, Lumb KJ, Miller MW, Patel SB, Pio B, Plummer CW, Sherborne BS, Sheth P, Souza S, Tummala S, Vonrhein C, Webb M, Allen SJ, Johnston JM, Weinglass AB, Sharma S, Soisson SM (2017) Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat Struct Mol Biol 24:570–577

    CAS  PubMed  Google Scholar 

  87. Cao C, Tan Q, Xu C, He L, Yang L, Zhou Y, Zhou Y, Qiao A, Lu M, Yi C, Han GW, Wang X, Li X, Yang H, Rao Z, Jiang H, Zhao Y, Liu J, Stevens RC, Zhao Q, Zhang XC, Wu B (2018) Structural basis for signal recognition and transduction by platelet-activating-factor receptor. Nat Struct Mol Biol 25:488–495

    CAS  PubMed  Google Scholar 

  88. Hori T, Okuno T, Hirata K, Yamashita K, Kawano Y, Yamamoto M, Hato M, Nakamura M, Shimizu T, Yokomizo T, Miyano M, Yokoyama S (2018) Na(+)-mimicking ligands stabilize the inactive state of leukotriene B4 receptor BLT1. Nat Chem Biol 14:262–269

    CAS  PubMed  Google Scholar 

  89. Fan H, Chen S, Yuan X, Han S, Zhang H, Xia W, Xu Y, Zhao Q, Wu B (2019) Structural basis for ligand recognition of the human thromboxane A2 receptor. Nat Chem Biol 15:27–33

    CAS  PubMed  Google Scholar 

  90. Wang L, Yao D, Deepak R, Liu H, Xiao Q, Fan H, Gong W, Wei Z, Zhang C (2018) Structures of the human PGD2 receptor CRTH2 reveal novel mechanisms for ligand recognition. Mol Cell 72(48–59):e44

    Google Scholar 

  91. Morimoto K, Suno R, Hotta Y, Yamashita K, Hirata K, Yamamoto M, Narumiya S, Iwata S, Kobayashi T (2019) Crystal structure of the endogenous agonist-bound prostanoid receptor EP3. Nat Chem Biol 15:8–10

    CAS  PubMed  Google Scholar 

  92. Toyoda Y, Morimoto K, Suno R, Horita S, Yamashita K, Hirata K, Sekiguchi Y, Yasuda S, Shiroishi M, Shimizu T, Urushibata Y, Kajiwara Y, Inazumi T, Hotta Y, Asada H, Nakane T, Shiimura Y, Nakagita T, Tsuge K, Yoshida S, Kuribara T, Hosoya T, Sugimoto Y, Nomura N, Sato M, Hirokawa T, Kinoshita M, Murata T, Takayama K, Yamamoto M, Narumiya S, Iwata S, Kobayashi T (2019) Ligand binding to human prostaglandin E receptor EP4 at the lipid-bilayer interface. Nat Chem Biol 15:18–26

    CAS  PubMed  Google Scholar 

  93. Krishna Kumar K, Shalev-Benami M, Robertson MJ, Hu H, Banister SD, Hollingsworth SA, Latorraca NR, Kato HE, Hilger D, Maeda S, Weis WI, Farrens DL, Dror RO, Malhotra SV, Kobilka BK, Skiniotis G (2019) Structure of a signaling cannabinoid receptor 1-G protein complex. Cell 176(448–458):e412

    Google Scholar 

  94. Li X, Hua T, Vemuri K, Ho JH, Wu Y, Wu L, Popov P, Benchama O, Zvonok N, Locke K, Qu L, Han GW, Iyer MR, Cinar R, Coffey NJ, Wang J, Wu M, Katritch V, Zhao S, Kunos G, Bohn LM, Makriyannis A, Stevens RC, Liu ZJ (2019) Crystal structure of the human cannabinoid receptor CB2. Cell 176(459–467):e413

    Google Scholar 

  95. Luginina A, Gusach A, Marin E, Mishin A, Brouillette R, Popov P, Shiriaeva A, Besserer-Offroy E, Longpre JM, Lyapina E, Ishchenko A, Patel N, Polovinkin V, Safronova N, Bogorodskiy A, Edelweiss E, Hu H, Weierstall U, Liu W, Batyuk A, Gordeliy V, Han GW, Sarret P, Katritch V, Borshchevskiy V, Cherezov V (2019) Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs. Sci Adv 5:eaax2518

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Shao Z, Yan W, Chapman K, Ramesh K, Ferrell AJ, Yin J, Wang X, Xu Q, Rosenbaum DM (2019) Structure of an allosteric modulator bound to the CB1 cannabinoid receptor. Nat Chem Biol 15:1199–1205

    CAS  PubMed  Google Scholar 

  97. Gusach A, Luginina A, Marin E, Brouillette RL, Besserer-Offroy E, Longpre JM, Ishchenko A, Popov P, Patel N, Fujimoto T, Maruyama T, Stauch B, Ergasheva M, Romanovskaia D, Stepko A, Kovalev K, Shevtsov M, Gordeliy V, Han GW, Katritch V, Borshchevskiy V, Sarret P, Mishin A, Cherezov V (2019) Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors. Nat Commun 10:5573

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    CAS  PubMed  Google Scholar 

  99. Burke JE, Dennis EA (2009) Phospholipase A2 structure/function, mechanism, and signaling. J Lipid Res 50(Suppl):S237–S242

    PubMed  PubMed Central  Google Scholar 

  100. Murakami M, Miki Y, Sato H, Murase R, Taketomi Y, Yamamoto K (2019) Group IID, IIE, IIF and III secreted phospholipase A2s. Biochim Biophys Acta Mol Cell Biol Lipids 1864:803–818

    CAS  PubMed  Google Scholar 

  101. Shimizu T (2009) Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu Rev Pharmacol Toxicol 49:123–150

    CAS  PubMed  Google Scholar 

  102. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182

    CAS  PubMed  Google Scholar 

  103. Marcus AJ (1978) The role of lipids in platelet function: with particular reference to the arachidonic acid pathway. J Lipid Res 19:793–826

    CAS  PubMed  Google Scholar 

  104. Bergström S, Sjövall J (1957) The isolation of prostaglandin. Acta Chem Scand 11:1086–1086

    Google Scholar 

  105. Bergström S, Danielsson H, Samuelsson B (1964) The enzymatic formation of prostaglandin E2 from arachidonic acid prostaglandins and related factors 32. Biochim Biophys Acta 90:207–210

    Google Scholar 

  106. Van D, Beerthuis RK, Nugteren DH, Vonkeman H (1964) The biosynthesis of prostaglandins. Biochim Biophys Acta 90:204–207

    PubMed  Google Scholar 

  107. Corey EJ, Andersen NH, Carlson RM, Paust J, Vedejs E, Vlattas I, Winter RE (1968) Total synthesis of prostaglandins. Synthesis of the pure dl-E1, -F1-alpha-F1-beta, -A1, and -B1 hormones. J Am Chem Soc 90:3245–3247

    CAS  PubMed  Google Scholar 

  108. Corey EJ, Vlattas I, Andersen NH, Harding K (1968) A new total synthesis of prostaglandins of the E1 and F1 series including 11-epiprostaglandins. J Am Chem Soc 90:3247–3248

    CAS  PubMed  Google Scholar 

  109. Hamberg M, Svensson J, Samuelsson B (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A 72:2994–2998

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665

    CAS  PubMed  Google Scholar 

  111. Whittaker N, Bunting S, Salmon J, Moncada S, Vane JR, Johnson RA, Morton DR, Kinner JH, Gorman RR, McGuire JC, Sun FF (1976) The chemical structure of prostaglandin X (prostacyclin). Prostaglandins 12:915–928

    CAS  PubMed  Google Scholar 

  112. Narumiya S, Shimizu T, Yamamoto S (2016) In Memoriam: Osamu Hayaishi (1920–2015). J Lipid Res 57:517–522

    PubMed  PubMed Central  Google Scholar 

  113. Ushikubi F, Nakajima M, Hirata M, Okuma M, Fujiwara M, Narumiya S (1989) Purification of the thromboxane A2/prostaglandin H2 receptor from human blood platelets. J Biol Chem 264:16496–16501

    CAS  PubMed  Google Scholar 

  114. Hanasaki K, Arita H (1988) Characterization of a new compound, S-145, as a specific TXA2 receptor antagonist in platelets. Thromb Res 50:365–376

    CAS  PubMed  Google Scholar 

  115. Samuelsson B (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220:568–575

    CAS  PubMed  Google Scholar 

  116. Borgeat P, Samuelsson B (1979) Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. Formation of a novel dihydroxyeicosatetraenoic acid. J Biol Chem 254:2643–2646

    CAS  PubMed  Google Scholar 

  117. Yokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T (2000) A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med 192:421–432

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Feldberg W, Kellaway CH (1938) Liberation of histamine and formation of lysocithin-like substances by cobra venom. J Physiol 94:187–226

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Brocklehurst WE (1960) The release of histamine and formation of a slow-reacting substance (SRS-A) during anaphylactic shock. J Physiol 151:416–435

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Augstein J, Farmer JB, Lee TB, Sheard P, Tattersall ML (1973) Selective inhibitor of slow reacting substance of anaphylaxis. Nat New Biol 245:215–217

    CAS  PubMed  Google Scholar 

  121. Murphy RC, Hammarstrom S, Samuelsson B (1979) Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci U S A 76:4275–4279

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lewis RA, Drazen JM, Austen KF, Clark DA, Corey EJ (1980) Identification of the C(6)-S-conjugate of leukotriene A with cysteine as a naturally occurring slow reacting substance of anaphylaxis (SRS-A). Importance of the 11-cis-geometry for biological activity. Biochem Biophys Res Commun 96:271–277

    CAS  PubMed  Google Scholar 

  123. Drazen JM, Austen KF, Lewis RA, Clark DA, Goto G, Marfat A, Corey EJ (1980) Comparative airway and vascular activities of leukotrienes C-1 and D in vivo and in vitro. Proc Natl Acad Sci U S A 77:4354–4358

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Krell RD, Osborn R, Vickery L, Falcone K, O’Donnell M, Gleason J, Kinzig C, Bryan D (1981) Contraction of isolated airway smooth muscle by synthetic leukotrienes C4 and D4. Prostaglandins 22:387–409

    CAS  PubMed  Google Scholar 

  125. Lee TH, Austen KF, Corey EJ, Drazen JM (1984) Leukotriene E4-induced airway hyperresponsiveness of guinea pig tracheal smooth muscle to histamine and evidence for three separate sulfidopeptide leukotriene receptors. Proc Natl Acad Sci U S A 81:4922–4925

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Nakagawa N, Obata T, Kobayashi T, Okada Y, Nambu F, Terawaki T, Aishita H (1992) In vivo pharmacologic profile of ONO-1078: a potent, selective and orally active peptide leukotriene (LT) antagonist. Jpn J Pharmacol 60:217–225

    CAS  PubMed  Google Scholar 

  127. Obata T, Nambu F, Kitagawa T, Terashima H, Toda M, Okegawa T, Kawasaki A (1987) ONO-1078: an antagonist of leukotrienes. Adv Prostaglandin Thromboxane Leukot Res 17A:540–543

    CAS  PubMed  Google Scholar 

  128. Wittenberger T, Hellebrand S, Munck A, Kreienkamp HJ, Schaller HC, Hampe W (2002) GPR99, a new G protein-coupled receptor with homology to a new subgroup of nucleotide receptors. BMC Genomics 3:17

    PubMed  PubMed Central  Google Scholar 

  129. He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, Chen JL, Tian H, Ling L (2004) Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429:188–193

    CAS  PubMed  Google Scholar 

  130. Davenport AP, Alexander SP, Sharman JL, Pawson AJ, Benson HE, Monaghan AE, Liew WC, Mpamhanga CP, Bonner TI, Neubig RR, Pin JP, Spedding M, Harmar AJ (2013) International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev 65:967–986

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Nie D, Hillman GG, Geddes T, Tang K, Pierson C, Grignon DJ, Honn KV (1998) Platelet-type 12-lipoxygenase in a human prostate carcinoma stimulates angiogenesis and tumor growth. Cancer Res 58:4047–4051

    CAS  PubMed  Google Scholar 

  132. Nie D, Krishnamoorthy S, Jin R, Tang K, Chen Y, Qiao Y, Zacharek A, Guo Y, Milanini J, Pages G, Honn KV (2006) Mechanisms regulating tumor angiogenesis by 12-lipoxygenase in prostate cancer cells. J Biol Chem 281:18601–18609

    CAS  PubMed  Google Scholar 

  133. Pidgeon GP, Tang K, Cai YL, Piasentin E, Honn KV (2003) Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing alpha(v)beta(3) and alpha(v)beta(5) integrin expression. Cancer Res 63:4258–4267

    CAS  PubMed  Google Scholar 

  134. Alkayed NJ, Cao Z, Qian ZY, Nagarajan S, Liu X, Nelson J, Xie F, Li B, Fan W, Liu L, Grafe MR, Xiao X, Barnes AP, Kaul S (2018) Bidirectional control of coronary vascular resistance by Eicosanoids via a Novel GPCR. bioRxiv

    Google Scholar 

  135. Zhang JV, Ren PG, Avsian-Kretchmer O, Luo CW, Rauch R, Klein C, Hsueh AJ (2005) Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science 310:996–999

    CAS  PubMed  Google Scholar 

  136. Chartrel N, Alvear-Perez R, Leprince J, Iturrioz X, Reaux-Le Goazigo A, Audinot V, Chomarat P, Coge F, Nosjean O, Rodriguez M, Galizzi JP, Boutin JA, Vaudry H, Llorens-Cortes C (2007) Comment on “Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake”. Science 315:766; author reply 766

    Google Scholar 

  137. Holst B, Egerod KL, Schild E, Vickers SP, Cheetham S, Gerlach LO, Storjohann L, Stidsen CE, Jones R, Beck-Sickinger AG, Schwartz TW (2007) GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology 148:13–20

    CAS  PubMed  Google Scholar 

  138. Powell WS, Gravelle F, Gravel S (1992) Metabolism of 5(S)-hydroxy-6,8,11,14-eicosatetraenoic acid and other 5(S)-hydroxyeicosanoids by a specific dehydrogenase in human polymorphonuclear leukocytes. J Biol Chem 267:19233–19241

    CAS  PubMed  Google Scholar 

  139. Back M, Powell WS, Dahlen SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE (2014) Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR review 7. Br J Pharmacol 171:3551–3574

    PubMed  PubMed Central  Google Scholar 

  140. Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S (2002) Identification of G protein-coupled receptor genes from the human genome sequence. FEBS Lett 520:97–101

    CAS  PubMed  Google Scholar 

  141. Buckley CD, Gilroy DW, Serhan CN (2014) Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 40:315–327

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Chiang N, Serhan CN (2017) Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol Asp Med 58:114–129

    CAS  Google Scholar 

  143. Levy BD, Serhan CN (2014) Resolution of acute inflammation in the lung. Annu Rev Physiol 76:467–492

    CAS  PubMed  Google Scholar 

  144. Norris PC, Serhan CN (2018) Metabololipidomic profiling of functional immunoresolvent clusters and eicosanoids in mammalian tissues. Biochem Biophys Res Commun 504:553–561

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Serhan CN (2010) Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol 177:1576–1591

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Serhan CN, Levy BD (2018) Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest 128:2657–2669

    PubMed  PubMed Central  Google Scholar 

  147. Serhan CN, Hamberg M, Samuelsson B (1984) Trihydroxytetraenes: a novel series of compounds formed from arachidonic acid in human leukocytes. Biochem Biophys Res Commun 118:943–949

    CAS  PubMed  Google Scholar 

  148. Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N (2015) Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim Biophys Acta 1851:397–413

    CAS  PubMed  Google Scholar 

  149. Serhan CN, Chiang N, Dalli J (2018) New pro-resolving n-3 mediators bridge resolution of infectious inflammation to tissue regeneration. Mol Asp Med 64:1–17

    CAS  Google Scholar 

  150. Serhan CN (2017) Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. Mol Asp Med 58:1–11

    Google Scholar 

  151. Dalli J, Serhan CN (2017) Pro-resolving mediators in regulating and conferring macrophage function. Front Immunol 8:1400

    PubMed  PubMed Central  Google Scholar 

  152. Bao L, Gerard NP, Eddy RL Jr, Shows TB, Gerard C (1992) Mapping of genes for the human C5a receptor (C5AR), human FMLP receptor (FPR), and two FMLP receptor homologue orphan receptors (FPRH1, FPRH2) to chromosome 19. Genomics 13:437–440

    CAS  PubMed  Google Scholar 

  153. Murphy PM, Ozcelik T, Kenney RT, Tiffany HL, McDermott D, Francke U (1992) A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family. J Biol Chem 267:7637–7643

    CAS  PubMed  Google Scholar 

  154. Ye RD, Cavanagh SL, Quehenberger O, Prossnitz ER, Cochrane CG (1992) Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochem Biophys Res Commun 184:582–589

    CAS  PubMed  Google Scholar 

  155. Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB, Gray M, D’Acquisto F, Buckingham JC, Perretti M, Flower RJ (2010) Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. J Immunol 184:2611–2619

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, Le Poul E, Migeotte I, Brezillon S, Tyldesley R, Blanpain C, Detheux M, Mantovani A, Sozzani S, Vassart G, Parmentier M, Communi D (2003) Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med 198:977–985

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Kohno M, Hasegawa H, Inoue A, Muraoka M, Miyazaki T, Oka K, Yasukawa M (2006) Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem Biophys Res Commun 347:827–832

    CAS  PubMed  Google Scholar 

  158. Console-Bram L, Brailoiu E, Brailoiu GC, Sharir H, Abood ME (2014) Activation of GPR18 by cannabinoid compounds: a tale of biased agonism. Br J Pharmacol 171:3908–3917

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Rimmerman N, Bradshaw HB, Hughes HV, Chen JS, Hu SS, McHugh D, Vefring E, Jahnsen JA, Thompson EL, Masuda K, Cravatt BF, Burstein S, Vasko MR, Prieto AL, O’Dell DK, Walker JM (2008) N-palmitoyl glycine, a novel endogenous lipid that acts as a modulator of calcium influx and nitric oxide production in sensory neurons. Mol Pharmacol 74:213–224

    CAS  PubMed  Google Scholar 

  160. Yin H, Chu A, Li W, Wang B, Shelton F, Otero F, Nguyen DG, Caldwell JS, Chen YA (2009) Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J Biol Chem 284:12328–12338

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Qin Y, Verdegaal EM, Siderius M, Bebelman JP, Smit MJ, Leurs R, Willemze R, Tensen CP, Osanto S (2011) Quantitative expression profiling of G-protein-coupled receptors (GPCRs) in metastatic melanoma: the constitutively active orphan GPCR GPR18 as novel drug target. Pigment Cell Melanoma Res 24:207–218

    CAS  PubMed  Google Scholar 

  162. Tokumura A, Fukuzawa K, Akamatsu Y, Yamada S, Suzuki T, Tsukatani H (1978) Identification of vasopressor phospholipid in crude soybean lecithin. Lipids 13:468–472

    CAS  PubMed  Google Scholar 

  163. van Corven EJ, Groenink A, Jalink K, Eichholtz T, Moolenaar WH (1989) Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell 59:45–54

    PubMed  Google Scholar 

  164. Mizuno H, Kihara Y, Kussrow A, Chen A, Ray M, Rivera R, Bornhop DJ, Chun J (2019) Lysophospholipid G protein-coupled receptor binding parameters as determined by backscattering interferometry. J Lipid Res 60:212–217

    CAS  PubMed  Google Scholar 

  165. Yanagida K, Masago K, Nakanishi H, Kihara Y, Hamano F, Tajima Y, Taguchi R, Shimizu T, Ishii S (2009) Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/LPA6. J Biol Chem 284:17731–17741

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kitamura H, Makide K, Shuto A, Ikubo M, Inoue A, Suzuki K, Sato Y, Nakamura S, Otani Y, Ohwada T, Aoki J (2012) GPR34 is a receptor for lysophosphatidylserine with a fatty acid at the sn-2 position. J Biochem 151:511–518

    CAS  PubMed  Google Scholar 

  167. Makide K, Uwamizu A, Shinjo Y, Ishiguro J, Okutani M, Inoue A, Aoki J (2014) Novel lysophosphoplipid receptors: their structure and function. J Lipid Res 55:1986–1995

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kihara Y, Maceyka M, Spiegel S, Chun J (2014) Lysophospholipid receptor nomenclature review: IUPHAR review 8. Br J Pharmacol 171:3575–3594

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Sawzdargo M, Nguyen T, Lee DK, Lynch KR, Cheng R, Heng HH, George SR, O’Dowd BF (1999) Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain Res Mol Brain Res 64:193–198

    CAS  PubMed  Google Scholar 

  170. Baker D, Pryce G, Davies WL, Hiley CR (2006) In silico patent searching reveals a new cannabinoid receptor. Trends Pharmacol Sci 27:1–4

    CAS  PubMed  Google Scholar 

  171. Johns DG, Behm DJ, Walker DJ, Ao Z, Shapland EM, Daniels DA, Riddick M, Dowell S, Staton PC, Green P, Shabon U, Bao W, Aiyar N, Yue TL, Brown AJ, Morrison AD, Douglas SA (2007) The novel endocannabinoid receptor GPR55 is activated by atypical cannabinoids but does not mediate their vasodilator effects. Br J Pharmacol 152:825–831

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Oka S, Toshida T, Maruyama K, Nakajima K, Yamashita A, Sugiura T (2009) 2-Arachidonoyl-sn-glycero-3-phosphoinositol: a possible natural ligand for GPR55. J Biochem 145:13–20

    CAS  PubMed  Google Scholar 

  174. Zhang H, Desai NN, Olivera A, Seki T, Brooker G, Spiegel S (1991) Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 114:155–167

    CAS  PubMed  Google Scholar 

  175. Hla T, Lee MJ, Ancellin N, Thangada S, Liu CH, Kluk M, Chae SS, Wu MT (2000) Sphingosine-1-phosphate signaling via the EDG-1 family of G-protein-coupled receptors. Ann N Y Acad Sci 905:16–24

    CAS  PubMed  Google Scholar 

  176. Chun J, Kihara Y, Jonnalagadda D, Blaho VA (2019) Fingolimod: lessons learned and new opportunities for treating multiple sclerosis and other disorders. Annu Rev Pharmacol Toxicol 59:149–170

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Groves A, Kihara Y, Chun J (2013) Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J Neurol Sci 328:9–18

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Kihara Y (2019) Systematic understanding of bioactive lipids in neuro-immune interactions: lessons from an animal model of multiple sclerosis. Adv Exp Med Biol 1161:133–148

    CAS  PubMed  Google Scholar 

  179. Kihara Y, Mizuno H, Chun J (2015) Lysophospholipid receptors in drug discovery. Exp Cell Res 333:171–177

    CAS  PubMed  Google Scholar 

  180. Abel EL (1980) Marihuana. The first twelve thousand years. Springer, Boston

    Google Scholar 

  181. Ren M, Tang Z, Wu X, Spengler R, Jiang H, Yang Y, Boivin N (2019) The origins of cannabis smoking: chemical residue evidence from the first millennium BCE in the Pamirs. Sci Adv 5:eaaw1391

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Brand EJ, Zhao Z (2017) Cannabis in Chinese medicine: are some traditional indications referenced in ancient literature related to cannabinoids? Front Pharmacol 8:108

    PubMed  PubMed Central  Google Scholar 

  183. Jacob A, Todd AR (1940) Cannabis indica. Part II. Isolation of cannabidiol from Egyptian hashish. Observations on the structure of cannabinol. J Chem Soc:649–653

    Google Scholar 

  184. Adams R, Baker BR, Wearn RB (1940) Structure of Cannabinol. III. Synthesis of Cannabinol, l-Hydroxy-3-n-amyló^b-trimethyl-ó-dibenzopyran. J Am Chem Soc 62:2204–2207

    CAS  Google Scholar 

  185. Single convention on narcotic drugs, Gt. Brit (1965) Single convention on narcotic drugs, 1961; New York, March 30–August 1. In: Presented to parliament by the Secretary of State for Foreign Affairs by Command of Her Majesty June 1965. H.M. Stationery Off., London

    Google Scholar 

  186. Gaoni Y, Mechoulam R (1964) Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    CAS  Google Scholar 

  187. Di Marzo V (2006) A brief history of cannabinoid and endocannabinoid pharmacology as inspired by the work of British scientists. Trends Pharmacol Sci 27:134–140

    PubMed  Google Scholar 

  188. Benveniste J, Henson PM, Cochrane CG (1972) Leukocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils, and a platelet-activating factor. J Exp Med 136:1356–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Demopoulos CA, Pinckard RN, Hanahan DJ (1979) Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). J Biol Chem 254:9355–9358

    CAS  PubMed  Google Scholar 

  190. Shindou H, Hishikawa D, Nakanishi H, Harayama T, Ishii S, Taguchi R, Shimizu T (2007) A single enzyme catalyzes both platelet-activating factor production and membrane biogenesis of inflammatory cells. Cloning and characterization of acetyl-CoA:LYSO-PAF acetyltransferase. J Biol Chem 282:6532–6539

    CAS  PubMed  Google Scholar 

  191. Morrison WJ, Shukla SD (1988) Desensitization of receptor-coupled activation of phosphoinositide-specific phospholipase C in platelets: evidence for distinct mechanisms for platelet-activating factor and thrombin. Mol Pharmacol 33:58–63

    CAS  PubMed  Google Scholar 

  192. Sawzdargo M, George SR, Nguyen T, Xu S, Kolakowski LF, O’Dowd BF (1997) A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. Biochem Biophys Res Commun 239:543–547

    CAS  PubMed  Google Scholar 

  193. Sasaki S, Kitamura S, Negoro N, Suzuki M, Tsujihata Y, Suzuki N, Santou T, Kanzaki N, Harada M, Tanaka Y, Kobayashi M, Tada N, Funami M, Tanaka T, Yamamoto Y, Fukatsu K, Yasuma T, Momose Y (2011) Design, synthesis, and biological activity of potent and orally available G protein-coupled receptor 40 agonists. J Med Chem 54:1365–1378

    CAS  PubMed  Google Scholar 

  194. Yabuki C, Komatsu H, Tsujihata Y, Maeda R, Ito R, Matsuda-Nagasumi K, Sakuma K, Miyawaki K, Kikuchi N, Takeuchi K, Habata Y, Mori M (2013) A novel antidiabetic drug, fasiglifam/TAK-875, acts as an ago-allosteric modulator of FFAR1. PLoS One 8:e76280

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Burant CF, Viswanathan P, Marcinak J, Cao C, Vakilynejad M, Xie B, Leifke E (2012) TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 379:1403–1411

    CAS  PubMed  Google Scholar 

  196. Kaku K, Enya K, Nakaya R, Ohira T, Matsuno R (2016) Long-term safety and efficacy of fasiglifam (TAK-875), a G-protein-coupled receptor 40 agonist, as monotherapy and combination therapy in Japanese patients with type 2 diabetes: a 52-week open-label phase III study. Diabetes Obes Metab 18:925–929

    CAS  PubMed  Google Scholar 

  197. Fredriksson R, Hoglund PJ, Gloriam DE, Lagerstrom MC, Schioth HB (2003) Seven evolutionarily conserved human rhodopsin G protein-coupled receptors lacking close relatives. FEBS Lett 554:381–388

    CAS  PubMed  Google Scholar 

  198. Gendaszewska-Darmach E, Drzazga A, Koziolkiewicz M (2019) Targeting GPCRs activated by fatty acid-derived lipids in type 2 diabetes. Trends Mol Med 25(10):915–929

    CAS  PubMed  Google Scholar 

  199. Walter P, Green S, Greene G, Krust A, Bornert JM, Jeltsch JM, Staub A, Jensen E, Scrace G, Waterfield M et al (1985) Cloning of the human estrogen receptor cDNA. Proc Natl Acad Sci U S A 82:7889–7893

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J (1986) Sequence and expression of human estrogen receptor complementary DNA. Science 231:1150–1154

    CAS  PubMed  Google Scholar 

  201. O’Malley BW, Khan S (2013) Elwood V. Jensen (1920–2012): father of the nuclear receptors. Proc Natl Acad Sci U S A 110:3707–3708

    PubMed  PubMed Central  Google Scholar 

  202. Szego CM, Davis JS (1967) Adenosine 3′,5′-monophosphate in rat uterus: acute elevation by estrogen. Proc Natl Acad Sci U S A 58:1711–1718

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Szego CM, Davis JS (1969) Inhibition of estrogen-induced elevation of cyclic 3′,5′-adenosine monophosphate in rat uterus. I. By beta-adrenergic receptor-blocking drugs. Mol Pharmacol 5:470–480

    CAS  PubMed  Google Scholar 

  204. Szego CM, Davis JS (1969) Inhibition of estrogen-induced cyclic AMP elevation in rat uterus. II: By glucocorticoids. Life Sci 8:1109–1116

    CAS  PubMed  Google Scholar 

  205. Soloff MS, Szego CM (1969) Purification of estradiol receptor from rat uterus and blockade of its estrogen-binding function by specific antibody. Biochem Biophys Res Commun 34:141–147

    CAS  PubMed  Google Scholar 

  206. Prossnitz ER, Arterburn JB (2015) International Union of Basic and Clinical Pharmacology. XCVII. G protein-coupled estrogen receptor and its pharmacologic modulators. Pharmacol Rev 67:505–540

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Staels B, Fonseca VA (2009) Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care 32(Suppl 2):S237–S245

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science 284:1365–1368

    CAS  PubMed  Google Scholar 

  209. Lieu T, Jayaweera G, Bunnett NW (2014) GPBA: a GPCR for bile acids and an emerging therapeutic target for disorders of digestion and sensation. Br J Pharmacol 171:1156–1166

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Yu H, Zhao T, Liu S, Wu Q, Johnson O, Wu Z, Zhuang Z, Shi Y, Peng L, He R, Yang Y, Sun J, Wang X, Xu H, Zeng Z, Zou P, Lei X, Luo W, Li Y (2019) MRGPRX4 is a bile acid receptor for human cholestatic itch. elife 8

    Google Scholar 

  211. Meixiong J, Vasavda C, Snyder SH, Dong X (2019) MRGPRX4 is a G protein-coupled receptor activated by bile acids that may contribute to cholestatic pruritus. Proc Natl Acad Sci U S A 116:10525–10530

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Meixiong J, Vasavda C, Green D, Zheng Q, Qi L, Kwatra SG, Hamilton JP, Snyder SH, Dong X (2019) Identification of a bilirubin receptor that may mediate a component of cholestatic itch. elife 8:e44116

    PubMed  PubMed Central  Google Scholar 

  213. Pereira JP, Kelly LM, Xu Y, Cyster JG (2009) EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460:1122–1126

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Birkenbach M, Josefsen K, Yalamanchili R, Lenoir G, Kieff E (1993) Epstein-Barr virus-induced genes: first lymphocyte-specific G protein-coupled peptide receptors. J Virol 67:2209–2220

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Saeki Y, Ueno S, Mizuno R, Nishimura T, Fujimura H, Nagai Y, Yanagihara T (1993) Molecular cloning of a novel putative G protein-coupled receptor (GPCR21) which is expressed predominantly in mouse central nervous system. FEBS Lett 336:317–322

    CAS  PubMed  Google Scholar 

  216. Eidne KA, Zabavnik J, Peters T, Yoshida S, Anderson L, Taylor PL (1991) Cloning, sequencing and tissue distribution of a candidate G protein-coupled receptor from rat pituitary gland. FEBS Lett 292:243–248

    CAS  PubMed  Google Scholar 

  217. Heiber M, Docherty JM, Shah G, Nguyen T, Cheng R, Heng HH, Marchese A, Tsui LC, Shi X, George SR et al (1995) Isolation of three novel human genes encoding G protein-coupled receptors. DNA Cell Biol 14:25–35

    CAS  PubMed  Google Scholar 

  218. Marchese A, Docherty JM, Nguyen T, Heiber M, Cheng R, Heng HH, Tsui LC, Shi X, George SR, O’Dowd BF (1994) Cloning of human genes encoding novel G protein-coupled receptors. Genomics 23:609–618

    CAS  PubMed  Google Scholar 

  219. Song ZH, Modi W, Bonner TI (1995) Molecular cloning and chromosomal localization of human genes encoding three closely related G protein-coupled receptors. Genomics 28:347–349

    CAS  PubMed  Google Scholar 

  220. Uhlenbrock K, Gassenhuber H, Kostenis E (2002) Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors. Cell Signal 14:941–953

    CAS  PubMed  Google Scholar 

  221. Ignatov A, Lintzel J, Hermans-Borgmeyer I, Kreienkamp HJ, Joost P, Thomsen S, Methner A, Schaller HC (2003) Role of the G-protein-coupled receptor GPR12 as high-affinity receptor for sphingosylphosphorylcholine and its expression and function in brain development. J Neurosci 23:907–914

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Ignatov A, Lintzel J, Kreienkamp HJ, Schaller HC (2003) Sphingosine-1-phosphate is a high-affinity ligand for the G protein-coupled receptor GPR6 from mouse and induces intracellular Ca2+ release by activating the sphingosine-kinase pathway. Biochem Biophys Res Commun 311:329–336

    CAS  PubMed  Google Scholar 

  223. Laun AS, Shrader SH, Song ZH (2018) Novel inverse agonists for the orphan G protein-coupled receptor 6. Heliyon 4:e00933

    PubMed  PubMed Central  Google Scholar 

  224. Laun AS, Song ZH (2017) GPR3 and GPR6, novel molecular targets for cannabidiol. Biochem Biophys Res Commun 490:17–21

    CAS  PubMed  Google Scholar 

  225. Niedernberg A, Tunaru S, Blaukat A, Ardati A, Kostenis E (2003) Sphingosine 1-phosphate and dioleoylphosphatidic acid are low affinity agonists for the orphan receptor GPR63. Cell Signal 15:435–446

    CAS  PubMed  Google Scholar 

  226. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028

    CAS  PubMed  Google Scholar 

  227. Oka S, Ota R, Shima M, Yamashita A, Sugiura T (2010) GPR35 is a novel lysophosphatidic acid receptor. Biochem Biophys Res Commun 395:232–237

    CAS  PubMed  Google Scholar 

  228. Deng H, Hu H, Fang Y (2012) Multiple tyrosine metabolites are GPR35 agonists. Sci Rep 2:373

    PubMed  PubMed Central  Google Scholar 

  229. Southern C, Cook JM, Neetoo-Isseljee Z, Taylor DL, Kettleborough CA, Merritt A, Bassoni DL, Raab WJ, Quinn E, Wehrman TS, Davenport AP, Brown AJ, Green A, Wigglesworth MJ, Rees S (2013) Screening beta-arrestin recruitment for the identification of natural ligands for orphan G-protein-coupled receptors. J Biomol Screen 18:599–609

    PubMed  Google Scholar 

  230. Wittenberger T, Schaller HC, Hellebrand S (2001) An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors. J Mol Biol 307:799–813

    CAS  PubMed  Google Scholar 

  231. Wang J, Wu X, Simonavicius N, Tian H, Ling L (2006) Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem 281:34457–34464

    CAS  PubMed  Google Scholar 

  232. Suzuki M, Takaishi S, Nagasaki M, Onozawa Y, Iino I, Maeda H, Komai T, Oda T (2013) Medium-chain fatty acid-sensing receptor, GPR84, is a proinflammatory receptor. J Biol Chem 288:10684–10691

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Tabata K, Baba K, Shiraishi A, Ito M, Fujita N (2007) The orphan GPCR GPR87 was deorphanized and shown to be a lysophosphatidic acid receptor. Biochem Biophys Res Commun 363:861–866

    CAS  PubMed  Google Scholar 

  234. Wetter JA, Revankar C, Hanson BJ (2009) Utilization of the tango beta-arrestin recruitment technology for cell-based EDG receptor assay development and interrogation. J Biomol Screen 14:1134–1141

    CAS  PubMed  Google Scholar 

  235. Soga T, Ohishi T, Matsui T, Saito T, Matsumoto M, Takasaki J, Matsumoto S, Kamohara M, Hiyama H, Yoshida S, Momose K, Ueda Y, Matsushime H, Kobori M, Furuichi K (2005) Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem Biophys Res Commun 326:744–751

    CAS  PubMed  Google Scholar 

  236. Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C (2006) Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 3:167–175

    CAS  PubMed  Google Scholar 

  237. Chu ZL, Carroll C, Chen R, Alfonso J, Gutierrez V, He H, Lucman A, Xing C, Sebring K, Zhou J, Wagner B, Unett D, Jones RM, Behan DP, Leonard J (2010) N-oleoyldopamine enhances glucose homeostasis through the activation of GPR119. Mol Endocrinol 24:161–170

    PubMed  PubMed Central  Google Scholar 

  238. Hansen KB, Rosenkilde MM, Knop FK, Wellner N, Diep TA, Rehfeld JF, Andersen UB, Holst JJ, Hansen HS (2011) 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J Clin Endocrinol Metab 96:E1409–E1417

    CAS  PubMed  Google Scholar 

  239. Overton HA, Fyfe MC, Reynet C (2008) GPR119, a novel G protein-coupled receptor target for the treatment of type 2 diabetes and obesity. Br J Pharmacol 153(Suppl 1):S76–S81

    CAS  PubMed  Google Scholar 

  240. Hamann J, Aust G, Arac D, Engel FB, Formstone C, Fredriksson R, Hall RA, Harty BL, Kirchhoff C, Knapp B, Krishnan A, Liebscher I, Lin HH, Martinelli DC, Monk KR, Peeters MC, Piao X, Promel S, Schoneberg T, Schwartz TW, Singer K, Stacey M, Ushkaryov YA, Vallon M, Wolfrum U, Wright MW, Xu L, Langenhan T, Schioth HB (2015) International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol Rev 67:338–367

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Nishimori H, Shiratsuchi T, Urano T, Kimura Y, Kiyono K, Tatsumi K, Yoshida S, Ono M, Kuwano M, Nakamura Y, Tokino T (1997) A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15:2145–2150

    CAS  PubMed  Google Scholar 

  242. Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW, Ravichandran KS (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:430–434

    CAS  PubMed  Google Scholar 

  243. Brugnera E, Haney L, Grimsley C, Lu M, Walk SF, Tosello-Trampont AC, Macara IG, Madhani H, Fink GR, Ravichandran KS (2002) Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol 4:574–582

    CAS  PubMed  Google Scholar 

  244. Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K, Walk SF, Nemergut ME, Macara IG, Francis R, Schedl T, Qin Y, Van Aelst L, Hengartner MO, Ravichandran KS (2001) CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107:27–41

    CAS  PubMed  Google Scholar 

  245. Park SY, Kim IS (2017) Engulfment signals and the phagocytic machinery for apoptotic cell clearance. Exp Mol Med 49:e331

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Fredriksson R, Lagerstrom MC, Hoglund PJ, Schioth HB (2002) Novel human G protein-coupled receptors with long N-terminals containing GPS domains and Ser/Thr-rich regions. FEBS Lett 531:407–414

    CAS  PubMed  Google Scholar 

  247. Lee JW, Huang BX, Kwon H, Rashid MA, Kharebava G, Desai A, Patnaik S, Marugan J, Kim HY (2016) Orphan GPR110 (ADGRF1) targeted by N-docosahexaenoylethanolamine in development of neurons and cognitive function. Nat Commun 7:13123

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16:829–842

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082

    CAS  PubMed  Google Scholar 

  250. Ho BK, Gruswitz F (2008) HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct Biol 8:49

    PubMed  PubMed Central  Google Scholar 

  251. Voss NR, Gerstein M (2010) 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res 38:W555–W562

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S (1997) Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol 122:217–224

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Al-Salama ZT (2019) Siponimod: first global approval. Drugs 79:1009–1015

    CAS  PubMed  Google Scholar 

  254. Gergely P, Nuesslein-Hildesheim B, Guerini D, Brinkmann V, Traebert M, Bruns C, Pan S, Gray NS, Hinterding K, Cooke NG, Groenewegen A, Vitaliti A, Sing T, Luttringer O, Yang J, Gardin A, Wang N, Crumb WJ Jr, Saltzman M, Rosenberg M, Wallstrom E (2012) The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. Br J Pharmacol 167:1035–1047

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Pan S, Gray NS, Gao W, Mi Y, Fan Y, Wang X, Tuntland T, Che J, Lefebvre S, Chen Y, Chu A, Hinterding K, Gardin A, End P, Heining P, Bruns C, Cooke NG, Nuesslein-Hildesheim B (2013) Discovery of BAF312 (Siponimod), a potent and selective S1P receptor modulator. ACS Med Chem Lett 4:333–337

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Brinkmann V, Cyster JG, Hla T (2004) FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant 4:1019–1025

    CAS  PubMed  Google Scholar 

  257. Chiba K, Adachi K (2012) Discovery of fingolimod, the sphingosine 1-phosphate receptor modulator and its application for the therapy of multiple sclerosis. Future Med Chem 4:771–781

    CAS  PubMed  Google Scholar 

  258. Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30:69–94

    CAS  PubMed  Google Scholar 

  259. Proia RL, Hla T (2015) Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest 125:1379–1387

    PubMed  PubMed Central  Google Scholar 

  260. Kirkby Shaw K, Rausch-Derra LC, Rhodes L (2016) Grapiprant: an EP4 prostaglandin receptor antagonist and novel therapy for pain and inflammation. Vet Med Sci 2:3–9

    CAS  PubMed  Google Scholar 

  261. Miao J, Lu X, Hu Y, Piao C, Wu X, Liu X, Huang C, Wang Y, Li D, Liu J (2017) Prostaglandin E2 and PD-1 mediated inhibition of antitumor CTL responses in the human tumor microenvironment. Oncotarget 8:89802–89810

    PubMed  PubMed Central  Google Scholar 

  262. Christopoulos A, Changeux JP, Catterall WA, Fabbro D, Burris TP, Cidlowski JA, Olsen RW, Peters JA, Neubig RR, Pin JP, Sexton PM, Kenakin TP, Ehlert FJ, Spedding M, Langmead CJ (2014) International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol Rev 66:918–947

    CAS  PubMed  Google Scholar 

  263. Shen Q, Wang G, Li S, Liu X, Lu S, Chen Z, Song K, Yan J, Geng L, Huang Z, Huang W, Chen G, Zhang J (2016) ASD v3.0: unraveling allosteric regulation with structural mechanisms and biological networks. Nucleic Acids Res 44:D527–D535

    CAS  PubMed  Google Scholar 

  264. Ayan M, Essiz S (2018) The neural gamma2alpha1beta2alpha1beta2 gamma amino butyric acid ion channel receptor: structural analysis of the effects of the ivermectin molecule and disulfide bridges. J Mol Model 24:206

    PubMed  Google Scholar 

  265. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hubner H, Pardon E, Valant C, Sexton PM, Christopoulos A, Felder CC, Gmeiner P, Steyaert J, Weis WI, Garcia KC, Wess J, Kobilka BK (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504:101–106

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Liu X, Ahn S, Kahsai AW, Meng KC, Latorraca NR, Pani B, Venkatakrishnan AJ, Masoudi A, Weis WI, Dror RO, Chen X, Lefkowitz RJ, Kobilka BK (2017) Mechanism of intracellular allosteric beta2AR antagonist revealed by X-ray crystal structure. Nature 548:480–484

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Negoro N, Sasaki S, Mikami S, Ito M, Suzuki M, Tsujihata Y, Ito R, Harada A, Takeuchi K, Suzuki N, Miyazaki J, Santou T, Odani T, Kanzaki N, Funami M, Tanaka T, Kogame A, Matsunaga S, Yasuma T, Momose Y (2010) Discovery of TAK-875: a potent, selective, and orally bioavailable GPR40 agonist. ACS Med Chem Lett 1:290–294

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Badal S, Smith KN, Rajnarayanan R (2017) Analysis of natural product regulation of cannabinoid receptors in the treatment of human disease. Pharmacol Ther 180:24–48

    CAS  PubMed  Google Scholar 

  270. Wisler JW, DeWire SM, Whalen EJ, Violin JD, Drake MT, Ahn S, Shenoy SK, Lefkowitz RJ (2007) A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci U S A 104:16657–16662

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Rankovic Z, Brust TF, Bohn LM (2016) Biased agonism: an emerging paradigm in GPCR drug discovery. Bioorg Med Chem Lett 26:241–250

    CAS  PubMed  Google Scholar 

  272. Komatsu H, Fukuchi M, Habata Y (2019) Potential utility of biased GPCR signaling for treatment of psychiatric disorders. Int J Mol Sci 20:3207

    CAS  PubMed Central  Google Scholar 

  273. Gundry J, Glenn R, Alagesan P, Rajagopal S (2017) A practical guide to approaching biased agonism at G protein coupled receptors. Front Neurosci 11:17

    PubMed  PubMed Central  Google Scholar 

  274. Tan L, Yan W, McCorvy JD, Cheng J (2018) Biased ligands of G protein-coupled receptors (GPCRs): structure-functional selectivity relationships (SFSRs) and therapeutic potential. J Med Chem 61:9841–9878

    CAS  PubMed  Google Scholar 

  275. Ogawa S, Watanabe T, Sugimoto I, Moriyuki K, Goto Y, Yamane S, Watanabe A, Tsuboi K, Kinoshita A, Kigoshi H, Tani K, Maruyama T (2016) Discovery of G protein-biased EP2 receptor agonists. ACS Med Chem Lett 7:306–311

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Ogawa S, Watanabe T, Moriyuki K, Goto Y, Yamane S, Watanabe A, Tsuboi K, Kinoshita A, Okada T, Takeda H, Tani K, Maruyama T (2016) Structural optimization and structure-functional selectivity relationship studies of G protein-biased EP2 receptor agonists. Bioorg Med Chem Lett 26:2446–2449

    CAS  PubMed  Google Scholar 

  277. Shimizu Y, Nakayama M (2017) Discovery of novel Gq-biased LPA1 negative allosteric modulators. SLAS Discov 22:859–866

    CAS  PubMed  Google Scholar 

  278. Galvani S, Sanson M, Blaho VA, Swendeman SL, Obinata H, Conger H, Dahlback B, Kono M, Proia RL, Smith JD, Hla T (2015) HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Sci Signal 8:ra79

    PubMed  PubMed Central  Google Scholar 

  279. Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J, Sevvana M, Egerer-Sieber C, Muller YA, Hla T, Nielsen LB, Dahlback B (2011) Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A 108:9613–9618

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Neubig RR, Spedding M, Kenakin T, Christopoulos A, International Union of Pharmacology Committee on Receptor, and C. Drug (2003) International Union of Pharmacology Committee on receptor nomenclature and drug classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol Rev 55:597–606

    CAS  PubMed  Google Scholar 

  281. Quancard J, Bollbuck B, Janser P, Angst D, Berst F, Buehlmayer P, Streiff M, Beerli C, Brinkmann V, Guerini D, Smith PA, Seabrook TJ, Traebert M, Seuwen K, Hersperger R, Bruns C, Bassilana F, Bigaud M (2012) A potent and selective S1P(1) antagonist with efficacy in experimental autoimmune encephalomyelitis. Chem Biol 19:1142–1151

    CAS  PubMed  Google Scholar 

  282. Leavy O (2010) Therapeutic antibodies: past, present and future. Nat Rev Immunol 10:297

    CAS  PubMed  Google Scholar 

  283. Dolgin E (2018) First GPCR-directed antibody passes approval milestone. Nat Rev Drug Discov 17:457–459

    CAS  PubMed  Google Scholar 

  284. Ureshino H, Kamachi K, Kimura S (2019) Mogamulizumab for the treatment of adult T-cell leukemia/lymphoma. Clin Lymphoma Myeloma Leuk 19:326–331

    PubMed  Google Scholar 

  285. Dibba P, Li AA, Cholankeril G, Ali Khan M, Kim D, Ahmed A (2019) Potential mechanisms influencing the inverse relationship between cannabis and nonalcoholic fatty liver disease: a commentary. Nutr Metab Insights 12:1178638819847480

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Christian Munk for supplying the GPCR phylogenetic data in Fig. 10.1, Ms. Danielle Jones (SBP) for editorial assistance. This work was supported by NINDS of the National Institutes of Health under award number R01NS103940 (Y.K.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of Interest

H.M. is an employee of ONO Pharmaceutical Co., Ltd. Y.K. declares no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Kihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mizuno, H., Kihara, Y. (2020). Druggable Lipid GPCRs: Past, Present, and Prospects. In: Kihara, Y. (eds) Druggable Lipid Signaling Pathways. Advances in Experimental Medicine and Biology, vol 1274. Springer, Cham. https://doi.org/10.1007/978-3-030-50621-6_10

Download citation

Publish with us

Policies and ethics